Diffuse Inflammatory Pseudotumor of the Testis, the Epididymis and the Spermatic Cord

Zsolt OROSZ1 and István BESZNYAK2

1Department of Human and Experimental Tumopathology and
2Department of Surgery
National Institute of Oncology, Budapest, Hungary

Inflammatory pseudotumors have been recognized in many parts of the body. A case of a diffuse variant which involved the testis, the epididymis and the spermatic cord is described. The patient had enlarged left testis for several months. Clinically, the lesion mimicked cancer. Histologically, the lesion contained hyalinized fibrous tissue with spindle cells, plasma cells and lymphocytes. Gradual involvement of vascular channels by the cellular elements of inflammatory pseudotumor was observed. Results of immunohistochemical studies showed a myofibroblast differentiation in the majority of spindle cells: intense antibody staining for smooth muscle actin, muscle specific actin, and vimentin. The ultrastructural findings, intracytoplasmic filaments with dense bodies, were also consistent with the myofibroblastic nature of these cells. The histiocytic differentiation of spindle cells is questionable in our case, because only scattered histiocyte-like cells showed positivity with the KP-1 (CD-3) antibody. (Pathology Oncology Research Vol 1, No1, 75–79, 1995)

Key words: inflammatory pseudotumor, plasma cell granuloma, testis, myofibroblast

Introduction

Inflammatory pseudotumor (IPT) constitutes a category of benign tumor-like lesions that occurs throughout the body, most commonly in the lung. These well-circumscribed, non-encapsulated lesions are composed of a mixed inflammatory infiltrate in which plasma cells and spindle cells predominate in various proportions. The mixed infiltrate also contains eosinophils, neutrophils and histiocytes. Similar lesions – nodular or diffuse – of the paratesticular structures were described in the past as "fibroma", "pseudofibromatous periorchitis", "reactive periorchitis" and "fibrous pseudotumor." Based on Someren’s categories, these lesions are classified as sclerosing subtype of IPT. Recently, immunohistochemical studies on IPTs of the salivary glands and lymph nodes showed a biphasic spindle cell differentiation of myofibrolasts and histiocytes with variable staining for muscle-specific actin, smooth muscle actin and KP-1 (CD-3).

In our case inflammatory pseudotumor involved the testis, the epididymis and the spermatic cord. The purpose of this study was to identify the morphological, ultrastructural and immunohistochemical features of IPT, and discuss the possible pathogenesis.

Material and Methods

The surgical specimen was fixed in 10% buffered formalin and processed by standard technique to paraffin wax. The 5 μm-thick sections were stained with hematoxylin and eosin and Gomori’s reticulin. Stains. Parts of the fresh material were fixed in 2% glutaraldehyde, postfixed in 2% osmium tetroxide and embedded in araldite. Ultrathin sections were stained with lead citrate and uranyl acetate. For immunohistochemical examination, deparaffinized tissue sections were stained with a panel of monoclonal polyclonal antibodies using the avidin-biotin-peroxidase method. The reagents, their sources, and dilutions are listed in Table 1.

Report of a case

A 63-year-old man presented a hard, slightly tender scrotal mass, of approximately 7 cm in diameter, separable from the testis that he observed for 2 months. Further
physical examination and routine laboratory investigations were normal. The patient underwent a left orchectomy. Postoperative recovery was uneventful and the patient is well without any sign of tumor one year later.

Table 1. Immunohistochemical reagents used in the study of inflammatory pseudotumor by the avidin-peroxidase method

<table>
<thead>
<tr>
<th>Antibody specificity</th>
<th>Source</th>
<th>Dilution</th>
<th>Type of antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desmin</td>
<td>DAKO</td>
<td>1:100</td>
<td>Monoclonal</td>
</tr>
<tr>
<td>Vimentin</td>
<td>DAKO</td>
<td>1:100</td>
<td>Monoclonal</td>
</tr>
<tr>
<td>S-100 protein</td>
<td>DAKO</td>
<td>1:200</td>
<td>Polyclonal</td>
</tr>
<tr>
<td>Factor VIIIa</td>
<td>BioGenex</td>
<td>1:1</td>
<td>Polyclonal</td>
</tr>
<tr>
<td>Anti-kappa, antilambda</td>
<td>BioGenex</td>
<td>1:1</td>
<td>Monoclonal</td>
</tr>
<tr>
<td>KP-1 Smooth muscle actin (1A4)</td>
<td>DAKO</td>
<td>1:10</td>
<td>Monoclonal</td>
</tr>
<tr>
<td>Muscle-specific actin (HHF-35)</td>
<td>DAKO</td>
<td>1:50</td>
<td>Monoclonal</td>
</tr>
</tbody>
</table>

Pathological examination

Gross findings – The specimen measured 8 x 6.5 x 5 cm testis with a 7 cm spermatic cord. The tunica albuginea was intact. On the cut surface, in the center, the intact testicular parenchymma was 3 cm thick in its maximum diameter. It was surrounded, infiltrating the epididymis by 1-3 cm thick, firm to hard, opaque, yellowish-gray fasciculated tissue containing myoid parts. Similar nodules of about 0.5 cm in diameter, each were observed in the spermatic cord near the testis.

Microscopic findings – In the center of the testis residual tubules with inhibited spermiogenesis were found. The normal areas were surrounded by hyalinized fibrous tissue.

Figure 1. Fascicles of spindle cells with ill-defined storiform pattern and intercellular collagen bundles.

Figure 2. Myofibroblasts are intermingled with mixed inflammatory infiltration.

Figure 3. Cystic dilatation of tubules of the epididymis, surrounded by all elements of IFT.

PATHOLOGY ONCOLOGY RESEARCH
spermatic cord. These latter lesions contained fewer collagen fibers than the testis, and lead to cystic dilatation in some of the remaining tubules of the epididymis (Fig. 3).

Two types of vascular changes were seen: a) capillary proliferation similar to granulation tissue, b) involvement of larger vessels by the inflammatory pseudotumor. The involvement of larger vessels were at different stages being present synchronously. Stage I was the lymphoplasmacytic infiltration and capillary proliferation of the adventitia (Fig. 4 A); Stage II was the destruction of muscle coat by lymphoplasmacytic and spindle cell infiltration (Fig. 4 B); and Stage III was the obliteration of lumina by all elements of IPT (Fig. 4 C) with or without recanalization. Fibrinoid vascular necrosis was not present.

Immunohistochemical findings – The primary purpose of the immunohistochemical studies was to analyze the phenotypic nature of the spindle cells that provides the largest portion of the lesion. These spindle cells showed intense (> 50% of cells) positivity for α-smooth muscle actin (1A4) (Fig. 5.) and for muscle specific actin (HHF-35). No reactivity in these cells was detected for desmin, though the smooth-muscle wall of arteries was strongly positive. Vimentin was also localized to these cells. In regions of lymphoplasmacytic infiltrate, some of the scattered mononuclear cells resembling histiocytes reacted with the KP-1 antibody. In contrast, the spindle cells generally did not react with this antibody. No staining was observed for S-100 protein or Factor VIII-related antigen in cells within the lesion. Entrapped nerves and endothelial cells served as positive controls for these stainings. Spindle cells did not react with cytokeratin antibodies. Positivity for kappa and lambda chains reactions revealed the polyclonal nature of plasma cells and that of some transformed lymphocytes.

Ultrastructure – The sample contained a similar proportion of the cell types that were seen in the light microscopic specimens, with a predominance of fusiform cells. These had a cytoplasmic membrane with few out-pouchings. No intercellular junctions were demonstrable. The cytoplasm contained a well developed rough endoplasmic reticulum, a Golgi complex and bundles of filaments. The filaments situated parallel to the cell membrane, and locally made subplasmalemmal dense-bodies (Fig. 6.). The nuclei showed indentations and marginated, scanty heterochromatin. The intercellular substance was rich in collagen.

Discussion

Fibrous proliferations in paratesticular tissue may present either a diffuse or a nodular pattern. A variety of names describing these lesions are known of which the term of fibrous pseudotumor is widely accepted. The designation of inflammatory pseudotumor (IPT) suggests a reactive lesion and reflects similarity to IPTs occurring in other parts of the body. IPTs are a morphologically diverse group of lesions.
containing a mixture of spindle cells and chronic inflammatory cells. Immunohistochemical studies of spindle cells showed expression of smooth muscle actin, muscle-specific actin, vimentin and KP-1 antigen in salivary gland and in lymph nodes. Based on these data, Williams et al. concluded that spindle cells differentiated in both myofibroblastic/fibrohistiocytic pathways, while Davis et al. reported that the KP-1 positive and the muscle-specific/smooth muscle actin positive cells represent distinct populations. Our immunohistochemical findings did not support the hypothesis of dual phenotypic differentiation in paratesticular localization, since only scattered histiocyte-like cells expressed the KP-1 antigen, and these cells may represent only a part of the inflammatory infiltrate.

There are observations of vascular extension of IPT which can obliterate small or large vessels. However, the role of vascular changes, which were present in different stages in our case (especially in "younger", less hyalinized foci of the spermatic cord) is not clear in the histogenesis of IPT. The vascular damages may initiate a myofibroblast proliferation, similar to granulation tissue in the rat experimental model, but the process in IPT progresses and the continuous myofibroblast accumulation with lymphoplasmacytic infiltration may induce further vascular changes. The steps of this vicious circle could be mediated by elements of chronic inflammatory infiltrate. The possible first event in paratesticular localization is trauma, torsion or infection, even when there are no significant anamnestic data.

In conclusion, the fibrous pseudotumor of the para-testicular area is a secondary tumor-like proliferation of myofibroblasts with extensive collagen production showing close relationship with inflammatory pseudotumor of other parts of the body.

References


PATHOLOGY ONCOLOGY RESEARCH


