Immunohistochemical Expression of N-ras Oncogene is a Late Event in Head and Neck Carcinomas

John S. McDONALD1, Keith M. WILSON1, Peter GARTSIDE2, Robert L. SONKE1, Ljiljana PAVELIC1, Eric OKUM1, Julie NEANEN1, Jack L. GLUCKMAN1, Zlatko P. PAVELIC1

1Department of Otolaryngology-Head and Neck Surgery and 2Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio. 3Medical School, Ohio State University, Columbus, Ohio

This study investigated the expression of the N-ras oncogene in routinely processed tissue sections from 133 patients with squamous cell carcinoma of the head and neck (SCCHN) by immunohistochemistry using anti-N-ras monoclonal antibody. N-ras expression was present in 67 of 133 (49.6%) cases. There was a highly significant correlation between N-ras expression and clinical stage of disease (P=0.003). This study confirmed that overexpression of the N-ras oncogene is common in SCCHN and that it may be an important event in the late stage of disease. (Pathology Oncology Research Vol 2, No1-2, 30–33, 1996)

Key words: head and neck cancer, immunohistochemistry, N-ras

Introduction

It is well known that the staging of tumors using the TNM system is imperfect in predicting individual outcome and survival of patients with head and neck cancer. In an attempt to elucidate biological factors which may determine or help predict the aggressiveness of individual tumors, the experimental focus has turned to the aberrant expression of oncoproteins and tumor suppressor genes as potential prognostic indicators.10,18,19 Members of the ras oncogene family (H-ras, K-ras and N-ras) are among the most frequently altered oncoproteins in pancreatic, colorectal, thyroid and lung cancers and myeloid leukemias.15

In a previous study, we analyzed the expression of H-ras, K-ras and N-ras oncoproteins on frozen sections of 22 patients with primary squamous cell carcinoma of the head and neck (SCCHN) by immunohistochemistry using anti-ras monoclonal antibodies.15 This study showed that immunohistochemically detectable ras protein was a relatively common event in SCCHN. It also demonstrated a trend toward an increase in ras expression with an increase in tumor size and later stage of disease (stages 3 and 4) with no apparent correlation between ras protein expression and the presence or absence of regional lymph node involvement, site of occurrence, histopathologic differentiation, age, sex, or race.15 The current retrospective study was undertaken to extend the findings of the previous study and to determine if there was truly a relationship between N-ras oncogene over-expression and late stage of disease.

Materials and Methods

Archival tissue specimens from 133 patients treated surgically for SCCHN at the University of Cincinnati Medical Center and the Veterans Administration Hospital between 1980 and 1992 were evaluated for this study. All patients had only a single primary tumor and none had received prior treatment. Tissues fixed in 10% neutral buffered formaldehyde and processed for routine histopathologic evaluation were cut in 5 micron sections and the microwave heating technique originally described by Shi et al.5 and modified by Pavelic et al.15 was used for revealing previously unaccessible epitopes.

Reagents

Mouse monoclonal antibody against N-ras protein (clone H155-277) was supplied by Oncogene Science, Inc. (Uniondale, NY), and the specity was confirmed and reported by
Paliwala and Goldsmith. The antibody was used at 1:10 dilution (final concentration 10 \text{ ng/ml}). Negative controls were tissues incubated with the same dilution of mouse IgG. Other reagents used were rabbit anti-mouse immunoglobulin (Dako Corp., Carpinteria, CA); peroxidase anti-peroxidase (PAP) complex (Dako Corp.) and normal human serum (Gibco BRL, Grand Island, NY).

Immunohistochemistry

Endogenous peroxidase activity in tissue samples was neutralized by 15 minute incubation in 3\% H.O, in methanol. The slides were washed in phosphate buffered saline (PBS) and non-specific binding was blocked by applying normal rabbit serum in a humidity chamber at a dilution of 1:10 for 30 minutes. The slides were blotted and the primary anti-ras antibody in the appropriate optimized solution was applied for 2 hours at room temperature. The slides were then washed three times in PBS containing 3\%, 2\%, 1\% normal human serum (NHS), respectively. The second antibody (rabbit anti-mouse immunoglobulin) diluted 1:25 with PBS containing 0.1\% bovine serum albumin (BSA) and 1\% NHS was applied for 1 hour at room temperature. Finally, PAP conjugate diluted 1:100 in PBS with 0.1\% BSA was applied for 1 hour. The slides were then washed for 10 minutes in PBS, and diaminobenzidine tetrahydrochloride (DAB) was used as a chromogen. Prior to mounting, the slides were counter stained with hematoxalin.

Evaluation of slides

Tissue sections were evaluated randomly in a double blind fashion for the presence or absence of N-ras protein using light microscopy. A specimen was considered to be positive for the presence of the N-ras protein if greater than 1\% of cells exceeded background levels of staining. Staining was graded according to intensity of cytoplasmic staining (i.e., light = 1, intermediate = 2, intense = 3) and the percent of cells stained (i.e., 1 - 33\% = 1, 34 - 66\% = 2, > 66\% = 3). The values for each specimen were then totaled as 0, 2, 3, 4, 5, 6 and grouped as 0 = 0, 1 = 2 and 3, 4, 5, 6.

Statistical methods

The number of patients with tumors, with N-ras expression, and stage were tabulated in contingency tables. Chi-square tests of significance were computed using the method of Pearson.

Results

The immunohistochemical expression of N-ras protein was evaluated on a total of 133 cases of primary SCCHN. N-ras expression was present in 67 of 133 (49.6\%) cases. Table 1 shows a highly significant correlation between N-ras expression and clinical stage of disease (p = 0.003). Fig. 1 demonstrates that with progressing stage of disease there is a progressive increase in N-ras expression.

Table 1. The number of tumors which did and did not demonstrate N-ras expression by stage of disease.

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-ras Absent</td>
<td>36</td>
<td>7</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>N-ras Present</td>
<td>15</td>
<td>9</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>16</td>
<td>29</td>
<td>37</td>
</tr>
</tbody>
</table>

Chi-square (3 df) = 13.9; Significance: p = 0.003

Fig. 2 shows that for Stage 1 SCCHN there was an inverse relationship between staining intensity and the percent of N-ras positive specimens. For Stage II SCCHN, no relationship between stage and stain was noted. For combined Stage III and Stage IV SCCHN's there was a clear relationship between an increase in the percent of N-ras positive specimens and intensity of staining.

Discussion

It has long been known that malignancy results from a progressive series or accumulation of genetic changes in a single clone of cells. This change may be caused by mutagenesis (chemicals, radiation or viruses) or by retroviral transduction. The role of the ras gene family in...
different stages of carcino genesis remains uncertain with some conflicting data within the range of tumors studied. Reports have also varied as to the relationship between ras expression and the stage of tumor development. Mitsudomi et al.47 studying ras mutations at codons 12, 13 and 61 in non-small cell lung cancers demonstrated an association between ras gene mutations and shortened survival, indicating that ras mutations may be an important event in the late stages of the development of lung cancer. This runs counter to the findings of Fearon and Vogelstein7 in colorectal carcinoma in which ras mutations have been identified in the early stage of tumor development. Reports of the frequency of ras oncogene alteration in head and neck tumors in SCCHN are also somewhat contradictory. While reported to be a rare event in oral malignancies in the USA and Europe,12,29,37,85,110 it has been reported to occur in 35% of oral cancers in India.12

Contrary to some of the preceding reports, this study and our earlier report of 22 patients11 demonstrated that ras oncogenes over expression is a relatively common event in SCCHN and suggested that it may be an important event in the later stages of carcinogenesis.

References

Figure 2. The relationship between N-ras expression as a function of staining with the clinical stage of disease.

BIO-RAD Laboratories

is your reliable partner in Hungary

in chromatography, electrophoresis, blotting methods, DNA techniques, densitometers, confocal systems

Address: 1126 Böszörményi u. 13–15. tel/fax: 155-9641