Introduction

Targeted therapy is a rapidly evolving field in clinical oncology, changing the established therapeutic protocols. One of the most promising agent groups is the EGF receptor inhibitors each of which demonstrated significant clinical activity in a given cancer type, thereby providing new hope for patients. Today there are two classes of anti-EGFR agents, monoclonal antibodies and tyrosine kinase inhibitors, having their primary target on the human EGF receptor, HER-1. Targeted therapy requires careful selection of cancer patients whose malignant tumor expresses the given target in at least a small proportion of the cell population. This low diagnostic level of EGFR expression is questionable compared to the rational application of anti-HER-2/neu antibody therapy in patients having HER-2/neu overexpressing breast cancer (2+/3+ HercepTest™ and/or HER-2/neu gene amplification). The initial enthusiasm among oncologists toward the “targeted” nature of these therapies has recently been declined since clinical trials frequently failed to connect unequivocally the efficacy of these new treatments to the expression of EGFR protein determined by immunohistochemistry. Although there are several possible causes for this failure, among them non-selective (or multiple) targeting nature of the agents, one of the most straightforward problems could well be the efficacy of the pathological diagnostic procedure.

There are a couple of accepted diagnostic kits available worldwide to detect EGFR protein expression in cancer tissues for selecting of patients with the highest chance for clinical benefit from anti-EGFR therapy: the FDA-approved kit EGFR pharmDx™, the CONFIRM anti-EGF™ method, and the widely used anti-EGFR antibody clone 31G7. However, the results of EGFR expression are the EGFR pharmDx™ kit. Here we show that the recommended protocol may not be optimal for EGFR immunodetection. Microwave antigen retrieval and extended primary antibody incubation time converted four out of eight EGFR-negative tumors into EGFR-positive in a study of 50 lung adenocarcinoma cases. Accordingly, we recommend retesting cases negative for EGFR with EGFR pharmDx™ using protocol modifications optimizing antigen retrieval and the incubation periods.

Key words: EGF receptor immunodetection, EGFR pharmDx™, antigen retrieval, incubation time
Expression in cancer tissue greatly depend not only on the genotype of the tumor cells but also on the processing of the tissue sample for pathologic analysis. Since EGFR pharmDX™ is the FDA-approved diagnostic kit to determine the eligibility of colorectal cancer patients for anti-EGFR antibody (Cetuximab) therapy, this method has quickly become a "gold standard" of EGFR immunodiagnostics.

Here we report that protocol modifications involving antigen retrieval techniques and incubation times fundamentally affect the results obtained with the EGFR pharmDX™ kit. Based on these data we recommend a large-scale re-evaluation of the FDA-approved protocol due to the clinical significance of its results.

Materials and Methods

Fifty paraffin-embedded surgical samples of lung adenocarcinoma were used in the study. Tissue samples were routinely fixed in 10% (v/v) neutral buffered or unbuffered formalin, dehydrated in a graded series of ethanol, infiltrated with xylene and embedded into paraffin at a temperature not exceeding 60°C. Three to four micron thick sections were mounted on Superfrost slides (Thermo Shandon, Runcorn, UK), and were manually deparaffinized according to the manufacturer’s protocol (EGFR pharmDX™, Dako, Glostrup, Denmark).

We have used the antigen retrieval technique suggested by the instructions to the EGFR pharmDX™ kit: sections were exposed for 5 min at room temperature to 100 µl 0.1% proteinase K diluted in TRIS-HCl buffer containing 0.015 mol/L sodium azide, followed by HQ water washings (3+2 min). Alternatively, slides were immersed in 0.05 mM citrate buffer (pH=6), and exposed to 750 W microwave for 3x5 min (MFX-800-3 automatic microwave, Meditest, Budapest, Hungary). To block endogenous peroxidase activity, slides were treated for 5 min at room temperature with 3% H2O2, diluted either in distilled water in the case of protease digestion (post-treat-
EGFR Immunodetection

Table 1. Effect of technical modifications on the EGFR immunohistochemical reaction performed by EGFR pharmDx™ on lung adenocarcinoma cases

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Case N°</th>
<th>FDA</th>
<th>MW-FDA</th>
<th>FDA-long</th>
<th>MW-long</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>>50</td>
<td>>50</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td><10</td>
<td>>50</td>
<td>>50</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>>20</td>
<td><10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>>10</td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>nt</td>
<td>nt</td>
<td>0*</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>nt</td>
<td>nt</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>nt</td>
<td>nt</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>nt</td>
<td>nt</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Data are expressed in % of EGFR+ cancer cells. FDA= original FDA-approved protocol. MW-FDA= FDA protocol, but the antigen retrieval was replaced my microwave cooking. FDA-long= FDA protocol, but the incubation with the primary antibody was extended to overnight at 4°C. MW-long= microwave protocol. *=fixation problem

Results and Discussion

During a retrospective analysis of EGFR protein expression in fifty lung adenocarcinomas, we found 8 completely negative cases using the EGFR pharmDx™ kit. Since the inner positive control elements (peripheral nerves, bronchial epithelium) were weakly positive and the control slide provided by the manufacturer was positive, we have initially classified these tumors EGFR-negative. Since antigen retrieval techniques can fundamentally affect the efficacy of antigen detection, at first we have tested EGFR pharmDx™ kit on EGFR-overexpressing head and neck cancer (HNC) tissue after microwave antigen retrieval. Data indicated that the specific immunoreaction became stronger not only on EGFR membrane positive squamous cancer cells (data not shown) but on the adjacent normal squamous and columnar epithelium as well (Figure 1a,b), suggesting a better performance of the kit when using this alternative antigen retrieval instead of protease digestion. It is of note that this modification did not affect the background of the staining. We have also tested if the extended incubation time of the primary antibody and the use of an alternative detection system, LSAB kit, affect the EGFR reaction. Our data indicated that on the HNCC test slides these modifications did not influence the percentage or intensity of the EGFR-reaction (data not shown).

In the followings we have retested the eight EGFR-negative lung adenocarcinoma cases using the FDA protocol of EGFR pharmDx™ after microwave antigen retrieval, or using either antigen retrieval technique with extending the incubation period of the primary antibody to overnight incubation and replacing the detection system by the LSAB kit. In the case of one sample there was no positive reaction detectable for EGFR in normal bronchial epithelium even after alternative antigen retrieval or other protocol modifications and the tumor tissue remained repeatedly negative. This result suggested a fixation problem of the tissue sample which rendered the case unclassifiable. Out of the seven remaining cases, four became EGFR positive using the combination of microwave antigen retrieval technique and extended incubation with the primary antibody (Table 1). The four positive cases exhibited highly heterogeneous EGFR protein expressions after protocol modifications from less than 10% positive tumor cells to more than 50% (Table 1, Figure 1c,d). Comparing the percentage of positive tumor cells after various protocol modifications, it became evident that the major factor affecting the EGFR reaction is the incubation period which converted four previously negative cases strongly positive (Table 1). On the other hand, changing the antigen retrieval method further influenced the efficiency of the EGFR protein detection (Table 1). Replacement of the EGFR pharmDx™ developer by LSAB kit did not change the reaction specificity or intensity (data not shown).

EGFR-targeted therapies have changed the standard care of colorectal- and non-small cell lung (NSCL) cancer patients, and provided a promising alternative for the treatment of glioblastoma and head and neck cancer. The success of clinical trials on EGFR-targeted therapies imposes a great demand on pathologists to identify patients who could benefit most of these new regimens. Molecular diagnostics of these EGFR-targeted therapies still lags behind the clinical developments, and the clinical utility...
of nucleic acid-based and protein-based techniques are in the center of debate. Recently the controversy over EGFR immunohistochemistry resulted in trials where EGFR-targeted therapies were introduced without the determination of the expression of EGFR protein in the given tumor type. On the other hand, other trials revealed that EGFR-negative colorectal cancer patients responded to EGFR-targeted antibody therapy, supporting the critiques’ opinion. However, at several instances the methodology used to define EGFR protein expression was not presented in details in the trial reports, to be able to judge the performance of immunohistochemistry. Since the gold standard of EGFR immunohistochemistry, EGFR pharmDx™ kit, is the only FDA-approved test and therapeutic decisions are frequently based on its use, it would be necessary to re-evaluate the reliability and efficacy of its protocol. Based on our observations we suggest that in case of cancer tissues of low or negative EGFR protein expression determined by the protocol of the EGFR pharmDx™, it may be necessary to confirm the data by using extended incubation with the primary antibody and/or microwave antigen retrieval instead of the recommended protease digestion.

Acknowledgement

This work was supported by the Ministry of Education (NKTH 1a-0024-05).

References

6. Pii K, Andersen FG, Jensen S, Spaulding B: Characterization of a new monoclonal antibody, clone 2-18C9, for the measurement of epidermal growth factor receptor expression in solid tumor. Proc. 95th AACR, Abstr #5029, 2004