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Introduction

One of the greatest advances in our understanding of
cancer etiology has been the identification of subsets of
patients exhibiting hereditary susceptibility to the disease.
Cancer susceptibility occurs in two distinct forms. The
first involves very rare, usually recessive disorders with
very high cancer incidence that often have a spectrum of
developmental symptoms detectable at birth or in early
childhood. Examples include such syndromes as ataxia
telangiectasia (AT), Fanconi anemia (FA) and xeroderma
pigmentosum (XP), diseases that have been known for
decades. Cloning and characterization of the underlying
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Homozygous loss of activity at the breast cancer-
predisposing genes BRCA1 and BRCA2 (FANCD1)
confers increased susceptibility to DNA double
strand breaks, but this genotype occurs only in the
tumor itself, following loss of heterozygosity at one
of these loci.  Thus, if these genes play a role in
tumor etiology as opposed to tumor progression,
they must manifest a heterozygous phenotype at
the cellular level. To investigate the potential con-
sequences of somatic heterozygosity for a BRCA1
mutation demonstrably associated with breast car-
cinogenesis on background somatic mutational
burden, we applied the two standard assays of in
vivo human somatic mutation to blood samples
from a manifesting carrier of the Q1200X mutation
in BRCA1 whose tumor was uniquely ascertained
through an MRI screening study. The patient had
an allele-loss mutation frequency of 19.4 x 10-6 at the
autosomal GPA locus in erythrocytes and 17.1 x 10-6

at the X-linked HPRT locus in lymphocytes. Both of

these mutation frequencies are significantly higher
than expected from age-matched disease-free con-
trols (P < 0.05).  Mutation at the HPRT locus was
similarly elevated in lymphoblastoid cell lines
established from three other BRCA1 mutation carri-
ers with breast cancer.  Our patient’s GPA mutation
frequency is below the level established for diag-
nosis of homozygous Fanconi anemia patients, but
consistent with data from obligate heterozygotes.
The increased HPRT mutation frequency is more
reminiscent of data from patients with xeroderma
pigmentosum, a disease characterized by UV sensi-
tivity and deficiency in the nucleotide excision
pathway of DNA repair. Therefore, this BRCA1-
associated breast cancer patient manifests a unique
phenotype of increased background mutagenesis
that likely contributed to the development of her
disease independent of loss of heterozygosity at the
susceptibility locus. (Pathology Oncology Research
Vol 13, No 4, 276–283)
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genetic defects in these diseases has shown that they are
associated with deficiencies in the various processes of
DNA repair. The second type of cancer susceptibility is
more subtle, usually associated with cancer incidence in
early adulthood, with few or no other phenotypic manifes-
tations. These diseases are considered to be genetically
dominant and, as they occur in patients with no other
symptoms, their tumors are often considered to be sporadic
in the absence of a considerable family history or molecu-
lar analysis.  Examples of these disorders include Li-Frau-
meni syndrome and Lynch syndrome II or hereditary non-
polyposis colorectal cancer (HNPCC). The underlying
defect in these diseases has been identified as heterozy-
gosity for inactivation of recessive oncogenes known as
tumor suppressors.  Thus, although the tumor-promoting
phenotype is recessive at the cellular level, the high inci-
dence of somatic segregation of heterozygous alleles caus-
es it to be effectively dominant at the organismal level.
For many years it has been speculated that there might be
some connection between these two types of cancer sus-
ceptibility.

The breast cancer susceptibility syndromes associated
with mutational inactivation of the BRCA1 and BRCA2
genes are considered to be of the second type of cancer-
prone diseases, almost by definition establishing these
genes as tumor suppressors.  They have also been impli-
cated in DNA repair processes, however, suggesting that
they may, in fact, be “mutator” genes like those responsi-
ble for the recessive cancer syndromes.1 This situation
became clearer when it was recently discovered that
homozygosity for mutations in the BRCA2 gene was
responsible for FA patients of complementation group D,
identifying it also as the FANCD1 gene.2 The tumor sup-
pressor genes that are the genetic basis of HNPCC are
known to be involved in post-replicative repair of base
mismatches in DNA3 and the p53 gene, the basis of Li-
Fraumeni syndrome, is involved in repressing gene ampli-
fication,4 so both of these syndromes could be considered
as “mutator” gene syndromes as well.

The possibility that BRCA1 heterozygotes manifest a
cellular phenotype promoting carcinogenesis has been
investigated with conflicting results; most studies showing
no hypermutability in these cells or individuals,5,6 while
others have reported high spontaneous frequencies of
mutation7 and/or hyperinducibility.8

There are two widely applied methods of measuring
somatic mutation in humans, both blood cell-based.9 The
clonogenic HPRT assay involves chemical selection for
inactivation of the X-linked housekeeping gene hypoxan-
thine-guanine phosphoribosyltransferase in cultured lym-
phocytes.  The flow cytometric glycophorin A (GPA) assay
is based on detection and quantitation of somatic “allele
loss” mutations at the glycophorin A locus on chromosome
4. The GPA assay is potentially sensitive to a broad spec-

trum of mutational mechanismus, including point muta-
tion, small insertions and/or deletions, chromosomal aneu-
ploidy, epigenetic gene inactivation, homologous or non-
homologous recombination.10 The HPRT assay is sensitive
to point mutations, small insertions and deletions, but large
deletions and chromosome loss are inviable, and recombi-
nation appears to be suppressed, probably due to X-inacti-
vation. 

Previous studies have shown an association between
human in vivo somatic mutation level and elevated risk of
cancer,11-14 particularly in the so-called “DNA repair defi-
ciency” diseases AT, FA and Bloom syndrome, which
show 10-, 50- and 100-fold increases in GPA mutation fre-
quencies, respectively.15 Epidemiological evidence also
suggests that the otherwise asymptomatic heterozygotes
for the radiation-sensitivity syndrome AT are predisposed
to breast cancer.16,17 We recently reported the detection of
a mammographically undetectable breast tumor in an MRI
pilot screening program of young, high-risk women.18 In
the present study, mutation frequencies (Mf) at the GPA
and HPRT reporter loci are measured in this breast cancer
patient, who is now known to be a carrier for an inactivat-
ing mutation of the BRCA1 gene.

Materials and Methods

The patient was a 36-year-old woman with strong fami-
ly history of breast cancer (two affected first degree rela-
tives) recruited into a clinical trial of MRI screening for
young woman at high risk for breast cancer with dense
breast tissue.18 She was subsequently found to carry a
Q1200X premature termination mutation in the BRCA1
locus.19 Despite recent negative mammography, gadolini-
um enhancement images revealed a small, 1 cm lesion in
the upper-outer quadrant of the left breast, identified
pathologically as an infiltrating ductal carcinoma.  The
patient underwent a modified radical mastectomy of the
left breast and chose to also undergo a contralateral pro-
phylactic total mastectomy.  Blood was obtained for analy-
sis with consent under Magee-Womens Hospital/Universi-
ty of Pittsburgh IRB # MWH-94-108.

HPRT and GPA somatic mutation analyses

The HPRT and GPA somatic mutation assays were per-
formed on blood samples obtained from the patient and
concurrent disease-free controls.  The clonogenic HPRT
assay was performed by the method of O’Neill et al.20 T
lymphocytes were stimulated to proliferate in culture and
enzyme-deficient mutant clones selected in the presence of
the toxic nucleoside analog 6-thioguanine.  Results for the
concurrently analyzed normal control, an Mf of 5.0 x 10-6,
were consistent with our previous experience with this
individual (P = 0.45, z test), who has been analyzed 6 other
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times in our laboratory, yielding an average Mf of 8.6 ± 3.3
x 10-6 (mean ± standard deviation).

Briefly, the GPA assay involves labeling of the two poly-
morphic forms of the erythrocyte cell-surface protein gly-
cophorin A with monoclonal antibodies followed by flow
cytometric analysis to quantify cells with variant pheno-
types associated with bone marrow somatic mutation.21

The patient had the most informative genotype for this
analysis, heterozygosity for the MN blood group.  Results
for the concurrently analyzed normal control (total GPA
Mf, 12.6 x 10-6, allele loss 6.0 x 10-6, loss and duplication
6.6 x 10-6) were consistent with our previous experience
with this individual (P = 0.17, 0.28 and 0.17 for total GPA
Mf, allele loss frequency and loss and duplication frequen-
cy, respectively, z tests), who has been analyzed 11 other
times in our laboratory, yielding a total GPA Mf of 9.5 ±
1.3 x 10-6, an allele loss frequency of 5.1 ± 0.8 x 10-6 and a
loss and duplication frequency of 4.4 ± 0.8 x 10-6.

Controls

Normal GPA Mf for comparison were derived from our
control database, which is under continuous revision and
supplementation, and contains historical as well as con-
temporaneous data.  Several subsets of these data have
been published.22-24 Normal HPRT Mf for comparison are
derived from a number of published reports25-31 as well as
our own contemporaneous data. GPA Mf from homozy-
gous and heterozygous FA patients were taken from the
report of Sala-Trepat et al.32 and our own ongoing analy-
ses33,34 of clinical samples and samples provided from the
International Fanconi Anemia Registry (IFAR).  HPRT Mf

from homozygous and heterozygous FA patients were
derived from Vijayalaxmi et al.35 and Sala-Trepat et al.32

GPA allele loss Mf from XP homozygotes were reported in
Langlois et al.15 HPRT Mf in XP homozygotes and het-
erozygotes were compiled from a number of reports.12,36-42

Lymphoblastoid cell lines

Three lymphoblastoid cell lines from breast cancer
patients confirmed as heterozygous for inactivating muta-
tions in the BRCA1 gene were obtained from the Coriell
Cell Repositories (Camden, NJ): GM13708, GM13709
and GM13712, as well as 9 control cell lines: AG09393,
AG09980, AG10111, GM00946, GM01814, GM03797,
GM05380, GM14448 and GM14820.

Statistical analysis

Analysis of individual results in the context of control
populations was done with the z test at ∝ = 0.05 on ln-
transformed data. Comparisons between populations were
performed with the t test assuming unequal variances on
similarly transformed data or the nonparametric Mann
Whitney U test at the same level of significance.

Results

Somatic mutation at the autosomal GPA locus

The patient’s total GPA Mf was found to be 28.2 x 10-6.
Mf at this locus are known to be significantly age-depen-
dent,22,43 so the patient’s result is compared with normal
women ± 2 years from her age in Fig. 1, and against the

278 GRANT et al

PATHOLOGY ONCOLOGY RESEARCH

30

25

20

15

10

5

0

G
PA

m
ut

at
io

n 
fr

eq
ue

nc
i (

X
 1

0–6
) a b c

Age-matched
disease-free

controls

BRCA1 carrier
cancer patient

Age-matched
disease-free

controls

BRCA1 carrier
cancer patient

Age-matched
disease-free

controls

BRCA1 carrier
cancer patient

Figure 1. GPA Mf of the hereditary breast cancer patient and 18 age-matched controls (35-39 years). (a) Total GPA: bar indicates
average Mf of control population, 14.0 ± 5.6 x 10-6.  The patient’s result is significantly higher than the Mf of this limited control
population (P = 0.005). (b) Allele loss: bar indicates average Mf of control population, 6.6 ± 3.4 x 10-6. The patient’s Mf is signifi-
cantly higher than that of the controls (P = 0.0001). (c) Loss and duplication: bar indicates average Mf of the control population,
7.4 ± 2.8 x 10-6. The patient’s result is not significantly different from the Mf of these controls (P = 0.30).



Mf of our entire normals database, age-adjusted, in Table
1.  Although she appears to have a somewhat elevated
total GPA Mf (Fig. 1), in the 91st centile for the entire con-
trol database, it is not significantly higher than that
expected for her age (Table 1).  The GPA assay also
allows for the straightforward characterization of muta-
tions into two broad classes; those arising by simple
allele loss and those arising by allele loss accompanied by
duplication of the remaining allele.9,10,21 The patient’s
allele loss Mf was 19.4 x 10-6, and her loss and duplica-
tion Mf was 8.8 x 10-6 (note that the two add up to her
total GPA Mf).  It can now be seen that the elevation in the
patient’s Mf is confined to the allele loss class of varia-
tion, where it is unambiguously significant (Fig. 1 and
Table 2).

Somatic mutation at the X-linked HPRT locus

The patient’s HPRT Mf was found to be 17.1 x 10-6.
Once again, in vivo Mf at the HPRT locus are known to be
age-dependent,25,44,45 so the patient’s result is compared to
normal women ± 2 years from her age in Fig. 2, and
against the Mf of our entire normals database, age-adjust-
ed, in Table 2.  Compared to the subset of age-matched
controls, the patient’s Mf does not appear to be unusually
high (Fig. 2), but in comparison with the entire database it

does just reach significance (Table 2).  To confirm this
result, we obtained lymphoblastoid cell lines from 9 dis-
ease-free controls and 3 additional breast cancer patients
with known inactivating mutations in the BRCA1 gene (all
nonsense mutations resulting in premature truncation of
the protein product).  The HPRT Mf for the normal cell
lines was 8.8 ± 6.8 x 10-6, not significantly different from
our in vivo controls (P = 0.69). The mean HPRT Mf for the
3 heterozygous BRCA1 patient cell lines (Fig. 2) was 16.7
± 1.2 x 10-6, not significantly different from the in vivo
result from our patient (P = 0.63), but signification higher
than that of the in vitro controls (P = 0.009).  This effect is
accentuated by combining the in vivo and in vitro data (P
< 0.0001).

Discussion

In vivo somatic Mf in a breast cancer patient heterozy-
gous for an inactivating mutation in the BRCA1 gene was
significantly elevated over disease-free controls; 1.7-fold
in the case of GPA Mf and 2.3-fold in the case of in vivo
HPRT Mf. The latter result was confirmed in a study of
lymphoblastoid cell lines derived from breast cancer
patients, which exhibited a 1.9-fold increase in HPRT Mf

over similar controls.  These increases are similar to those
observed in analyses of Mf in blood samples from sporadic
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Table 1. GPA mutation frequencies for normal and DNA repair-deficient patients and populations

GPA Mf (x 10-6) Patient

Population  N Mean ± SD Range Percentile P1

a) all mutant classes 
Patient 28.2
Normal controls 644 16.6 ± 16.32 0.19–79.3 0.91 0.22
FA patients 63 455.8 ± 751.63 49.4–4257.4 0.02 0.022
FA carriers  36 31.9 ± 36.74 6.2–90.2 0.66 0.42

b) allele loss mutants only
Patient 19.4
Normal controls 644 6.7 ± 4.35 0.01–34.5 0.97 0.001
FA patients 63 379.9 ± 737.96 24.6–4084.0 0.02 0.047
FA carriers 36 10.4 ± 8.07 1.0–37.4 0.90 0.11
XP patients  7 4.6 ± 4.3 1.0–2.2 1.00 0.028

c) allele loss and duplication mutants only
Patient 8.8
Normal controls 644 9.2 ± 11.88 0.01–152.3 0.67 0.47
FA patients 63 74.0 ± 56.39 6.2–270.4 0.03 0.016
FA carriers  36 20.5 ± 31.710 4.0–152.8 0.43 0.31

1 z-test for patient data 2 excluding outlier with total GPA Mf of 6.7 x 10-3 3 excluding outliers with total GPA Mf of 7.4, 8.0 and
9.9 x 10-3 4 excluding outlier with total GPA Mf of 2.7 x 10-4 5 excluding 6 outliers with GPA allele loss Mf of 4.5, 4.8, 7.1, 7.7, 7.8,
and 16.2 x 10-5 6 excluding 3 outliers with GPA allele loss Mf of 7.0, 7.9 and 9.8 x 10-3 7 excluding outlier with GPA allele loss Mf

of 4.4 x 10-5 8 excluding outlier with GPA loss and duplication Mf of 8.7 x 10-4 9 excluding 2 outliers with GPA loss and dupli-
cation Mf of 3.2 and 3.5 x 10-4 10 excluding outlier with GPA loss and duplication Mf of 2.6 x 10-4



cancer patients: 1.7-fold increases in
both HPRT12 and GPA Mf.

14 In breast
cancer patients these increases in Mf

are 1.3-fold for HPRT46 and 1.5-fold
for GPA.47 In our hereditary breast
cancer patient, this increase becomes
2.9-fold if only the “allele loss” class
of GPA mutation is considered, a pat-
tern that is consistent with induced
mutation by most genotoxic expo-
sures, including ionizing radiation,9

and the elevated spontaneous Mf

observed in patients with AT.24 This
pattern suggests that haploinsufficien-
cy for BRCA1 does not affect the inci-
dence of mitotic recombination
(including gene conversion) or chro-
mosome missegregation, as they result in allele loss and
duplication.  Possible mechanisms associated with the
observed increase in simple allele loss still range from

point mutations and small, intragenic insertions and dele-
tions to large-scale, cytogenetically detectable chromo-
some deletion and even whole chromosome loss,10,21 how-
ever, since we observed a comparable increase in mutation
frequency at the X-linked HPRT locus, and major dele-
tions and chromosome loss are inviable at this locus,48 it
would appear that BRCA1 heterozygosity is associated
with gene-specific rather than regional mutational suscep-
tibility.

In patients with FA, we have found a consistent increase
in allele loss Mf, but a variable increase in the frequency of
loss and duplication.33,34 Since the BRCA1 gene has been
functionally linked to the FA repair system,1 deficiency for
this gene might be expected to produce a similar pheno-
type. As can be seen from Table 1, however, the GPA Mf

of our BRCA1 heterozygote was significantly lower than
those seen in FA patients, both in total and in each muta-
tional subclass. A more valid comparison, however, is to
compare the patient’s results to those of FA heterozygotes,
who do seem to have a subtle mutational susceptibility
phenotype.32-34 While the overall increase in GPA Mf in our
patient is certainly consistent with that observed in FA het-
erozygotes, the pattern does not match, with the patient’s
increase occurring in the allele loss class and the FA het-
erozygotes primarily increased in loss and duplication Mf.

Somewhat surprisingly, FA patients do not exhibit an
increased Mf at the HPRT locus,32 although they have a
significant shift in their HPRT mutational spectrum
towards gene deletions.49,50 These two apparently contra-
dictory findings are rationalized by invoking the well-
established limited viability of these cells, especially in the
presence of genotoxic agents.51,52 Indeed, in the present
analysis FA patients actually exhibit a significantly lower
HPRT Mf than controls (P = 0.037) (Table 2).  FA het-
erozygotes, however, exhibit an increased HPRT Mf,
which, although not significant in either of the original
reports,32,35 is highly significant in our pooled analysis (P <
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Figure 2. HPRT Mf of the hereditary breast cancer patient, 18
age-matched controls (35-39 years), 3 lymphoblastoid cell lines
derived from hereditary breast cancer patients and 9 lymphoblas-
toid cell lines derived from disease-free controls. The solid bars
represent the average Mf for the control population (9.7 ± 5.8 x
10-6), heterozygous BRCA1+/- cell lines (16.7 ± 1.2 x 10-6), and
control cell lines (8.8 ± 6.8 x 10-6), respectively.  The patient’s
result itself is not significantly higher than that of this restricted
set of controls (P = 0.092), but the average Mf of the 3 patient-
derived lymphoblastoid cell lines is, both alone (P = 0.048) and
with the addition of the patient’s lymphocyte-derived data (P =
0.022). The lighter line represents the average Mf of the entire
control database age-adjusted to that of the patient (Table 2).

Table 2. HPRT mutation frequencies for normal and DNA repair-deficient
patients and populations

HPRT Mf (x 10-6) Patient 

Population  N Mean ± SD Range Percentile P1

Patient 17.1
Normal controls 482 7.5 ± 4.92 0.32–6.4 0.95 0.049
FA patients 28 5.8 ± 4.63 0.20–5.4 0.97 0.083
FA carriers 27 12.0 ± 5.04 5.0–5.0 0.90 0.13
XP patients 16 15.0 ± 10.7 1.8–6.0 0.65 0.29
XP carriers  7 11.9 ± 8.7 3.4–0.4 0.88 0.19

1 z-test for patient data 2 excluding 10 outliers with HPRT Mf of > 3.1 x 10-5 3

excluding outlier with HPRT Mf of 2.6 x 10-5 4 excluding outlier with HPRT Mf of
6.8 x 10-5



0.001).  This increase in HPRT Mf is consistent with those
observed in our BRCA1 carriers, both in vivo (Table 2) and
in vitro (P = 0.10).

Another possible explanation for the increased muta-
tion frequency we have observed in BRCA1 heterozy-
gotes is an effect on the nucleotide excision DNA repair
pathway (NER). This pathway repairs DNA damage that
causes a distortion in the DNA helix, notably intrastrand
linkages caused by UV irradiation and bulky adducts
such as those caused by exposure to polycyclic aromatic
hydrocarbons, and deficiency in this DNA repair system
is associated with the cancer-predisposing disease XP.53

Overexpression of BRCA1 has been shown to enhance
NER capacity,54 probably through transcriptional regula-
tion of NER genes.55 Several studies have suggested that
breast cancer patients have lower NER capacity than the
normal population,56-58 and we have shown that early
stage breast tumors are consistently deficient in this type
of DNA repair.47

The phenotype of XP patients seems to be the opposite
of that of FA patients: they exhibit significantly increased
HPRT Mf,

12,36-42 but there is no evidence of an effect on
GPA Mf

15 (Tables 1 and 2). In our pooled analysis, the
increase in HPRT Mf is highly significant (P = 0.008),
and is consistent with that of our BRCA1 carrier patient
(Table 2) and data from the heterozygous BRCA1 lym-
phoblastoid cell lines (P = 0.23). XP heterozygotes also
exhibit a slightly increased HPRT Mf,

37-39 although it does
not reach statistical significance (P = 0.16). Since XP
patients have been identified with as much as 50% resid-
ual NER activity,53 it is reasonable that heterozygotes
should express a detectable phenotype, but, since the
HPRT Mf increase in XP homozygotes is only on the
order of 2-fold it would require analysis of a much larger
population of heterozygotes to achieve statistical signifi-
cance. Again, however, the results from our patient
(Table 2), and the BRCA1 carrier cell lines (P = 0.22) are
not significantly different from those of the population of
XP carriers.

BRCA1 carriers therefore manifest a unique phenotype
with respect to mutational susceptibility that may be relat-
ed to their tumor incidence. A more significant deficiency
in BRCA1 activity arises during tumorigenesis when the
locus undergoes loss of heterozygosity, but this is likely to
play a greater role in tumor progression.
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