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Abstract The aim of this study was to investigate seasonal
trends in the incidence of acute lymphoblastic leukaemia
(ALL) around the times of birth and diagnosis in children
aged 0—4 years and also to examine gender specific effects.
Children born in South Hungary during 1981-1997 were
analysed. Registrations of first malignancies for children,
diagnosed under age 5 years before the end of 2002 were
obtained from the Hungarian Paediatric Oncology Group
providing a representative sample of Hungarian children
over a 17 year period of time. Data were available on the
corresponding numbers of births for each month of the study
period were obtained. Statistical analyses were performed
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using logistic regression with harmonic components. The
study analysed 121 cases of children, aged under 5 years,
who were diagnosed with ALL. We found no seasonal effect
related to date of diagnosis. However, there was seasonal
variability for ALL related to date of birth. Maximal rates
were seen in children born in February and August in the
simple harmonic regression model for all children diagnosed
with ALL. Analysis by gender found evidence of seasonality
related to month of birth with peaks in February and August
in boys, but different seasonal effects were seen for girls
(peak in November, nadir in May). Our study provides some
evidence that male specific immune responses to infections
around the time of birth could explain the male predomi-
nance in the incidence of ALL.
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Introduction

Environmental hazards including infections have long been
suspected as a possible factor in the aetiology of leukaemia
and lymphoma (ALL) [1-3]. If seasonal variation in the
onset of disease could be shown in any of the diagnostic
subgroups of leukaemia or lymphoma, this could be
interpreted as supportive evidence of an aetiology linked
to exposure to infection [4, 5].

In a previous study [6] we reported the relation between
population mixing around the time of birth and the
subsequent risk of acute lymphoblastic leukaemia (ALL)
in children under 5 years of age. In the sex specific models
there was significant association between population mix-
ing and risk of ALL in boys, however, the relationship
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between population mixing and risk of ALL for girls was
less marked and not significant.

The aim of this study was to investigate, in a different
geographical area from previous studies, seasonal trends of
ALL around the time of birth and date of diagnosis in all
children aged 0—4 years and also for boys and girls separately.

Methods
Study Population

The study area was South Hungary which includes two
regions—South Transdanubia and South Great Plain. Chil-
dren born during 1981-1997 were analysed. Registrations of
first malignancies for children, born and diagnosed under age
5 years in Hungary before the end of 2002 were obtained
from the Hungarian Paediatric Oncology Group [7].

The Central Demographic Agency [8] provided data on
the number of births for each month over the study period
but by gender only for each year. The number of births in
each month for each gender was estimated assuming no
monthly variation in the gender ratio within any year.

Statistical Methods

The logistic regression model including periodic functions (a
sine and a cosine function, simultaneously) was applied for
the detection of seasonal variations. This method was
described by Stolwijk et al. [9] in detail previously. Monthly,
two monthly and two weekly time units were used to analyse
the data. The pattern of annual cyclical variation was studied
using dates of both birth and first diagnosis with ALL. The
magnitude of the seasonal variation, as expressed by the
amplitude of a simple harmonic oscillation, was also
calculated. The time at which the maximum and minimum
incidences occurred was estimated using single and double
peaks within the period of year. The x* goodness-of-fit test
was used to examine the adequacy of the description of the
data by a harmonic curve. Analyses were conducted for all
cases and for boys and girls separately. All analyses were
performed using STATA Software (version 8.0).

Results

The total number of childhood ALL cases in South
Hungary identified for the study was 121 (63 (52%) boys
and 58 (48%) girls) diagnosed under age 5 years. There
were 481,984 live births in the study area, during the
17 year-interval of 1981-1997. The distribution of the cases
in different age groups is shown in Table 1.
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Table 1 Age and gender distribution of all cases between 1981-1997
in South Hungary

Age (year) Girls Boys All Children
<1 3 3 6
1 9 12 21
2 18 15 33
3 14 17 31
4 14 16 30
Total 58 63 121

The monthly number of cases and births in the period 1981—
1997 are displayed in Table 2. Firstly, we tested whether there
is a seasonal pattern with one maximum level and one
minimum level per year. There was no evidence of seasonality
of birth for ALL in all children (p=0.37). However, in the
gender specific analyses, a cyclical pattern of a simple
harmonic curve was found for girls (p=0.023) with a
maximum incidence rate in November and a minimum
incidence rate in May (Fig. 1). The amplitude o was 0.57,
implying a 57% difference in rates from the mean to the
maximum.

The use of different time sectors: 2 months and 2 weeks,
had no influence of the seasonal pattern observed.

The logistic regression model was used to test further for
seasonality using sine and cosine functions with 6 month
period. There was a cyclic pattern for ALL in all children
diagnosed under age 5 years (Fig. 2). There were two peaks
in early February and early August, and two troughs in May
and November with an amplitude of 0.32 (p=0.034).

In the gender specific analyses, a similar cyclic pattern (p=
0.09) was found for boys (two peaks in early February and
early August, and two troughs in May and November), but no
cyclic pattern was for girls (Fig. 3.). All models had a good fit.

No evidence was found for seasonality of the date of
diagnosis.

Discussion
Main Findings

The pattern of annual cyclical variation in incidence of
childhood ALL was studied both in birth month and month
of first diagnosis during the period 1981-1997. We found no
seasonal effect related to date of diagnosis. However, there
was seasonal variability for ALL related to date of birth of all
children diagnosed under age 5 years. Maximal rates were in
children born in February and August in the simple harmonic
regression model for all cases. A similar seasonality pattern
of a borderline significance was found for boys in a gender
specific analysis. However, for girls a different seasonality
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Table 2 Number of births and cases of a//, among boys and girls born between 1981-1997 and diagnosed before the end of 2002

No. of all cases No. of births
Month Boys Girls Total cases Boys Girls All children
1 6 8 14 21,093 20,027 41,120
2 8 6 14 19,489 18,490 37,979
3 6 5 11 21,211 20,134 41,345
4 5 2 7 19,637 18,635 38,272
5 2 1 3 20,486 19,428 39,914
6 7 1 8 20,488 19,435 39,923
7 8 6 14 22,376 21,243 43,619
8 5 7 12 21,580 20,481 42,061
9 5 5 10 21,256 20,177 41,433
10 3 8 11 20,214 19,180 39,394
11 5 6 11 19,429 18,434 37,863
12 3 3 6 20,039 19,022 39,061
Total 63 58 121 247,298 234,686 481,984

pattern was found with a maximum level in November and a
minimum level in May. These findings were consistent when
different temporal units were used.

Strengths and Weaknesses

The establishment of the national oncologic care system in
the early 1970s, regional registration and regular updating
of patients’ files provides a high level of completeness of
ascertainment of leukaemia cases over a long time period in
Hungary [7]. This regional registration covers nearly a
quarter of the childhood population of the country
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providing a representative sample of Hungarian children.
Thus, our study included a large sample of the childhood
population over a 17 year period of time.

In our study the population denominator was accurately
known but in the gender specific analyses we used the exact
annual male: female ratio to estimate the number of births
for each subgroup.

Using a 6 month period described by sine and cosine
functions statistically significant monthly variation in the
date of birth of children aged under 5 years diagnosed with
ALL was seen. Our study was the first to investigate gender
specific cyclical patterns.
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Comparison with Other Studies

An investigation of seasonality stands as an important
component in the understanding of the aetiology descrip-
tion of certain childhood cancers. If early exposure to
infections is involved in the actiology of childhood
leukaemia then seasonal variation in the time of birth could
be expected, but only if the causal exposure is one for

Fig. 3 Seasonal variation in 457

month of birth in boys aged

under 5 years diagnosed with = [
ALL

354

b 8

]

Cases (per 100000 births)

Jul Sep  Oct Nov Jan

Month

Apr  May Jun Aug

which there is seasonal variation in prevalence. Previous
studies that have examined seasonality of time of birth in
relation to childhood ALL have produced conflicting
results. A study of seasonal variation related to date of
diagnosis from Hungary showed no effect [10]. The authors
analyzed 814 children, 0-18 years of age, in whom ALL
was diagnosed in the period between the Ist of January
1988 and 31st of December 2000. In our study we found
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also no seasonal effect related to date of diagnosis although
we used a longer time period and only included cases aged
under 5 years. In contrast evidence of seasonality in the
date of first symptom or of diagnosis have been found in
several previous studies. In a study from North West
England, Westerbeek et al. [11] found a cyclic effect related
to ALL with a peak in November. Badrinath et al. [12]
analysed the month of diagnosis of acute leukaemia in East
Anglia, UK, for the period 1971-1994, and showed a
significant summer excess for ALL in children. A summer
peak was also found in a study from the USA [13]. ALL
also demonstrated statistically significant monthly variation
in the date of appearance of the first symptom (peak in
October) and the date of diagnosis (peak in November) in
an Iranian study [14].

There was evidence of seasonality in date of birth in studies
from Denmark [15] and the UK, although there was
variability in the time of peak incidence [16, 17]. The
Danish study of children aged under 4 years diagnosed with
ALL found marked seasonality in birth with a peak in April.
A February peak was found in Northern England, UK, in a
study of children diagnosed with ALL aged 1-6 years [16],
and in a study of 15,835 cases of childhood leukaemia born
and diagnosed in the UK between 19531995 [17].

We found evidence of seasonality related to month of
birth with peaks in February and August. Both peaks
correspond to previous findings and could reflect the
seasonality of infectious diseases in temperate climates:
respiratory virus infections (for example, influenza, para-
influenza, respiratory syncytial virus) show marked season-
ality occurring in the winter months, and gastrointestinal
infections peaks in the summer months [18].

In the gender specific analyses different types of seasonal
evidence were seen for boys and girls. Two peaks in early
February and early August, and two nadirs in May and
November were in the simple harmonic regression model for
boys and a cyclic pattern of a simple harmonic curve was
found for girls with a maximum incidence rate in November.
These findings could confirm the impression that males are
more susceptible than females to some infectious diseases
[19-22]. Gender differences in disease incidence may
provide important clues to the pathogenesis of diseases
and further research on this subject should be encouraged.

Seasonal variation related to time of birth would indicate
exposure to an infection in utero or around the time of
birth. There are two hypotheses about the role of infection
in the etiology of leukemia. Kinlen [23] proposed that
childhood leukemia could be a rare response to in utero or
postnatal infectious exposure. In contrast, Greaves [24]
postulated that an initial mutational event occurs in utero
then subsequent mutations occur after birth which are
strongly influenced by the timing of exposure to infectious
agents in infancy. Our study provides some evidence of

different types of exposure to infections around the time of
birth in the gender specific analyses which in part, could
explain the male predominance in the incidence of ALL.

Conclusions

There was evidence of seasonality of birth in children, aged
under 5 years, who developed ALL. Our findings confirm
the suggestion that males are more susceptible than females
to a putative infectious exposure. However, the gender-
specific pathogenesis of ALL requires further investigation.
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