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Abstract Retinoblastoma is the most common primary intra-
ocular malignancy in children. Two step inactivation of RB/
(M1-M2) represents the key event in the pathogenesis of
retinoblastoma but additional genetic and epigenetic events
(M3-Mn) are required for tumor development. In the present
study, we employed Methylation Specific Multiplex Ligation
Probe Assay to investigate methylation status and copy num-
ber changes of 25 and 39 oncosuppressor genes, respectively.
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This technique was applied to analyse 12 retinoblastomas (5
bilateral and 7 unilateral) and results were compared to
corresponding normal retina. We identified hypermethylation
in seven new genes: MSH6 (50%), CD44 (42%), PAX5 (42%),
GATAS (25%), TP53 (8%), VHL (8%) and GSTP1 (8%) and
we confirmed the previously reported hypermethylation of
MGMT (58%), RBI (17%) and CDKN2 (8%). These genes
belong to key pathways including DNA repair, pRB and p53
signalling, transcriptional regulation, protein degradation,
cell-cell interaction, cellular adhesion and migration. In the
same group of retinoblastomas, a total of 29 copy number
changes (19 duplications and 10 deletions) have been identi-
fied. Interestingly, we found deletions of the following onco-
suppressor genes that might contribute to drive retinoblastoma
tumorigenesis: TP53, CDHI3, GATAS5, CHFR, TP73 and
IGSF4. The present data highlight the importance of epigenetic
changes in retinoblastoma and indicate seven hypermethylated
oncosuppressors never associated before to retinoblastoma
pathogenesis. This study also confirms the presence of copy
number variations in retinoblastoma, expecially in unilateral
cases (mean 3 +1.3) where these changes were found more
frequently respect to bilateral cases (mean 1.4+1.1).

Keywords Retinoblastoma - MS-MLPA - Epigenetics -
Copy number changes

Introduction

Retinoblastoma (RB, OMIM#180200) is a childhood malig-
nant tumor of the developing retina with an incidence of one
case in 14,000-22,000 live births [1]. Recent findings provide
support for a cone precursor origin of RB [2]. It is caused by
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biallelic inactivation (M1-M2) of the RB/ tumor suppressor
gene within chromosome bands 13q14.2 [3, 4]. In non-
hereditary RB (60%), both inactivating events occur in the
retinal cell leading to unilateral sporadic tumors [5]. In the
hereditary forms (40%), germline mutation of one RB/ allele
is associated to RB predisposition and is transmitted as
an autosomal-dominant trait with 90% penetrance [5, 6].
Inactivation of the second allele occurs in the retinal
cells and generally results in multiple and often bilateral
tumors.

In 1999, Gallie et al. introduced a model for retinoblastoma
development in which it was assumed that the two-step inac-
tivation of RB/ is necessary but not sufficient for the exponen-
tial expansion of RB and that further events (M3-Mn) are
required [7]. This hypothesis was supported by the observation
that RB tumors generally show additional recurrent genetic
alterations [8]. In particular, studies performed by standard
karyotype, CGH and array-CGH identified RB recurrent
genomic rearrangements including gain of 1q, 2p, 6p and 13q,
and loss of 164 [8, 9]. Additional events associated with tumor
onset and progression comprehend promoter hypermethyla-
tion of CpG islands that results in transcriptional silencing of
tumor suppressor genes. Promoter hypermethylation has been
demonstrated to be an important mechanism in the pathogen-
esis of various human cancers including ovarian cancer, renal
carcinoma, bladder cancer, colorectal cancer and pediatric
tumors [10—15]. Using bisulfite sequencing, methylation-
specific PCR and quantitative PCR assays the following genes
have been found hypermethylated in RB: MGMT, RASSF 14,

CASPS, MLH1, RBL2, NEUROG1, DAP-kinase, RUNX3 and
CACNAIG [15-21].

In this study, for the first time, we employed Methylation-
Specific Multiplex Ligation Probe Amplification (MS-MLPA)
technique to investigate RB epigenetic and copy number
changes of 25 and 39 onco-suppressor genes, respectively. In
particular, we analysed RB eye tissues from 12 patients, 5
bilateral and 7 unilateral, and we compared results with the
corresponding normal retina.

Material and Methods
Tissue Sample Collection

We collected 12 formalin-fixed paraffin-embedded eye sam-
ples from enucleated RB patients archived in the Department
of Human Pathology and Oncology of the University of Siena.
After surgery, enucleated eyes were immersion-fixed in buff-
ered formalin for 48 h. After fixation, sampling, paraffin
embedding, and cutting were carried out according to the
usual pathological methods. The group of samples included
5 bilateral cases and 7 unilateral cases. For each patient, the
corresponding DNA sample extracted from blood was avail-
able in the Italian Retinoblastoma Biobank (http://www.bio-
bank.unisi.it). A germline mutation in RB/ was identified in
all bilateral tumors (p.R455X in RB#263, p.R467X in
RB#190, p.V144£sX155 in RB#185, p.R787X in RB#225
and p.687fsX690 in RB#167) (Table 1). No germline mutations

Table 1 Clinical and pathologic features of RB patients. For laterality: U = unilateral, B = bilateral; A/D: Alive/dead; for histology: Und =
undifferentiated, Dif = differentiated; for foci: Uni: unifocal; Multi: multifocal; for therapy: JET = Carboplatinum in combination with Etoposide

Case Laterality RB]germline Ageat  A/D TNM Histology Foci Vitreous Relapses Metastasis Therapy
number mutation diagnosis Classification Seeding
(months)

RB#263 B p.Argd55X 4 A pT2a Und Multi No No No JET post-enucleation
(6 cycles)

RB#190 B p.-Argd67X 20 A pT3a Dif Multi No No No JET post-enucleation
(6 cycles)

RB#185 B p.Val144fsX155 10 A pT2 Dif Multi No No No JET post-enucleation
(6 cycles)

RB#225 B p.Arg787X 1 A pTl Dif Multi No No No Focal therapy
post-enucleation

RB#167 B p-Pro687fsX690 13 A pT1 Dif Multi No No No JET and focal therapy
post-enucleation (4 cycles)

RB#253 U _ 48 A pT2a Und Uni  Yes No No No therapy

RB#313 U B 6 D pT2a Dif Uni  No No Yes JET post-enucleation

(brain) (10 cycles)

RB#206 U B 44 A pT2b Dif Uni  No Yes No JET and focal therapy pre-
enucleation (10 cycles)

RB#76 U _ 30 A pT3a Dif Uni  No No No No therapy

RB#268 U _ 23 A pT2a Und Multi No No No No therapy

RB#297 U _ 20 A pT2a Dif Multi No No No No therapy

RB#79 U 5 A pT3a Dif Uni  No No No No therapy
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were detected in unilateral cases. Mutational screening was
carried out by DHPLC and sequencing analysis (point muta-
tions) and by MLPA (large rearrangements).

Laser-Capture Microdissection and DNA Extraction

Normal retina and RB tissues were identified in hematoxylin—
eosin-stained sections. Sections 5 pum thick were deparaffi-
nized, rehydrated, and stained with Mayer hematoxylin and
yellow eosin, then dehydrated with xylene. Slides were
observed through an inverse microscope. Cells of the two
different tissues were isolated by laser-capture microdissec-
tion (Arcturus PixCell II; MWG-Biotech). Selected cells were
immediately transferred into a standard microcentrifuge
tube containing digestion buffer and 20 pg/mL proteinase
K (Qiagen). DNA was extracted using QIAmp DNA Micro
Kit according to the manufacturer’s protocol. The Hoechst
dye-binding assay was used on a DyNA Quant 200 Fluo-
rometer (GE Healthcare) to determine the appropriate DNA
concentration.

MS-MLPA Assay

To perform methylation specific (MS) multiplex ligation probe
amplification analysis (MLPA; MRC Holland, Amsterdam,
The Netherlands) we used the ME002 Tumor Suppressor-2
kit (http://www.mlpa.com). Using this kit a total of 25 tumor
suppressor genes can be analysed for aberrant promoter meth-
ylation and 39 genes for copy number changes. Experimental
procedures were carried out according to manufacturer’s
instructions. Briefly, a total of 100 ng of DNA was diluted
with TE buffer and denaturated in a thermocycler. SALSA
MLPA buffer and MS-MLPA probes were added and hybrid-
ized to their specific targets for 16 h at 60°C. After hybridiza-
tion, samples were split equally into two vials, each containing
the same amount of DNA. Ligase-65 mix (Ligase 65 buffer,
Ligase 65 enzyme and water) was added to the first vial, and
Ligase-Digestion Mix (Ligase 65 buffer, Ligase 65 enzyme,
Hhal enzyme and water) to the second vial. Samples were
incubated at 49°C for 30 min. The ligase enzyme was inacti-
vated by heating at 98°C for 5 min. PCR was performed as
described by the manufacturer (MRC-Holland). Subsequently
PCR reaction fragments were separated and visualized on an
automated sequencer (ABI PRISM 310, Applied Biosystems).
Normal retina was used as control.

MS-MLPA Data Analysis

Promoter methylation and copy number changes were ana-
lysed using Coftalyser software (MRC-Holland). Methylation
values were obtained by a first step of normalization to com-
pensate for differences in PCR efficiency of the individual
samples: the fraction of each peak is calculated by dividing the

peak area of each probe amplification product by the com-
bined value of the control probes within the sample. This
“relative peak value” of the digested sample is divided by
the “relative peak value” of the corresponding undigested
sample, generating the “methylation ratio”. Aberrant methyl-
ation was scored when the calculated methylation ratio was
>25%. Any methylation percentage below this level was
considered as background. As previously reported, ratios were
interpreted as: mild hypermethylation (25%—-50%), moderate
hypermethylation (50%—-75%) and extensive hypermethyla-
tion (>75%) (Table 2) [22]. Copy number analysis was per-
formed using MLPA results from undigested samples. The
“relative peak value” was divided by the “mean probe frac-
tion” of this fragment within the included reference DNAs,
generating the “copy number ratio”. Results obtained from an
experiment performed on DNA isolated from 20 normal retina
samples gave threshold values to determine aberrant copy
number.

Statistical Analysis

Mann-Whitney U-test was used to compare promoter hyper-
methylation and copy number changes between unilateral
and bilateral samples. Chi square analysis in contingency
tables was conducted to estimate the relationship between
MGMT and MSH6 hypermethylation and tumor phenotype.
P-values <0.05 were considered significant.

Results
Detection of Promoter Hypermethylation

By using MS-MLPA probe set ME002 (MRC Holland) we
analyzed epigenetic changes in 12 RB FFPE tissue samples
(7 unilateral and 5 bilateral) and we compared results to
those obtained in corresponding normal retina samples
(Fig. 1). Patients’ characteristics are summarised in Table 1.
A total of 25 known oncosuppressor genes were analysed
for aberrant methylation (Table 2). MS-MLPA analysis was
executed in duplicate for all samples producing reproducible
ratios (data not shown). A total of 34 hypermethylation
events were identified (Table 2). Only three tumor samples
(3/12; 25%) did not exhibit gene hypermethylation (RB#79,
RB#225 and RB#167) (Table 2). Seven tumors (7/12; 58%)
had three or more hypermethylated genes (Table 2).

Promoter hypermethylation in more than one sample was
detected for the following genes: MGMT (7/12; 58%); MSH6
(6/12; 50%); CD44 (5/12; 42%); PAX5A4 (5/12; 42%); GATAS
(3/12; 25%); and RBI (2/12; 17%) (Fig. 1) (Table 2). Hyper-
methylation in only one sample was detected in 7P53, IGSF4,
VHL, GSTP1, CDKN2A (Table 2).
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Fig. 1 Detection of copy number variations and aberrant methylation
in tumor #253 respect to corresponding retina. MS-MLPA analysis
without Hhal enzyme treatment in normal retina a and tumor b. Note
TP53 and CDH 13 losses (copy number ratio: 0.41 and 0.54, respectively)

Concerning RB phenotype, promoter hypermethylation of
at least one gene was detected in six out of seven (86%)
unilateral samples and in three out of five (60%) bilateral
samples (Table 2). Average number of hypermethylation
events was 3.6 (+ 2.9) in unilateral samples and 1.8 (£ 1.6)
in bilateral cases (p=0.39). Hypermethylation of MGMT was
found at approximately the same frequency in unilateral and
bilateral samples (p=0.62) (Table 2). MSH6 hypermethylation

and TNXB gain (copy number ratio: 1.9) (red box). MS-MLPA analysis
with Hhal enzyme treatment in normal retina ¢ and tumor d. Note
aberrant methylation of MSH6 (methylation ratio: 41%) and CD44
(methylation ratio: 42%) (red box)

was more frequent in unilateral cases (5/7; 71%) (Table 2)

(p=0.08).
Detection of Copy Number Variations
By MS-MLPA, a total of 39 genes were analysed for copy

number gains/losses. On the basis of an experiment performed
on DNA isolated from 20 normal retina samples thresholds to
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detect gains and losses were set at 1.3 and 0.7, respectively.
Overall, copy number variations were detected in all samples
analysed, except for a bilateral sample (RB#185) (Table 2). In
total, we found 29 copy number changes (Table 2).
Concerning the phenotype, variations were found more fre-
quently in unilateral (mean 3 +1.3) respect to bilateral (mean
1.4+1.1) tumors (p=0.053). In particular, we found 19 gains
(66%) and 10 losses (34%). On average, we detected 1.7 gains
(+0.8) in unilateral samples and 1.2 (+0.8) gains in bilateral
samples. Losses were identified less often with average num-
ber being 1.3 (x1.1) and 0.2 (+0.4) in unilateral and bilateral
samples, respectively.

The most frequently affected MLPA probe was one target-
ing the TNXB gene, found duplicated in 5 unilateral samples
(42%) (Table 2). Other frequent gains involved MLH3 (3/12;
25%), WTI (3/12; 25%), and PAX6 (2/12; 17%) (Table 2).
Deletions detected in two samples involved RB/ and CHFR
(Table 2). Eleven genes showed copy number variations in
only one sample: TP53, CDHI3, PYCARD, GATAS, APC,
TP73, IGSF4, PARK?2, PTCH, ESR and BRCA?2 (Table 2).

Discussion

The advancement acquired in knowledge of gene expression
regulation by epigenetic changes is improving our learning
of tumor onset and development [23-25]. In 1999, Jones
and Laird proposed the “expanded two hit model” to include
epigenetic gene silencing as an inactivating mechanism of
tumorigenesis [26]. Concerning retinoblastoma, methylation
of RB1I promoter has been reported to account for 8-13% of
somatic mutations [8, 27]. In addition, the following genes
have been reported as aberrantly methylated in RB: MGMT,
RASSF1A4, CASPS, MLHI, NEUROGI, DAP-kinase,
RUNX3 and CACNAIG [15-18, 20, 21]. In the present
study, for the first time, we employed Methylation Specific-
MLPA technique to investigate methylation profile of 25 tumor
suppressor genes in 12 RB eye tissues (7 unilateral and 5
bilateral). MS-MLPA has been the method of choice since it
has been demonstrated that this technique can be applied
successfully to DNA derived from paraffin-embedded tissues
[28]. We identified aberrant methylation in the promoter of the
following 10 genes: MGMT (7/12; 58%), MSH6 (6/12; 50%),
CD44 (5/12; 42%), PAXS (5/12; 42%), GATAS (3/12; 25%),
RBI (2/12; 17%), CDKN2 (1/12; 8%), TP53 (1/12; 8%), VHL
(1/12; 8%) and GSTPI (1/12; 8%)).

The most frequent aberrant methylation was found in
MGMT (methylation range: 35-68%) (Table 2). This is in
accordance with previous studies by Choy et al, even if we
reported a higher percentage (58% vs 15-35%) [16, 18]. Fur-
thermore, in the present study, MGMT hypermethylation
showed approximately the same frequency in bilateral (3/5;
60%) and unilateral (4/7; 57%) cases, while Choy et al. reported
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a higher frequency in bilateral cases [16]. Our findings are
therefore in contrast with the Choy et al. hypothesis of MGMT
hypermethylation being associated with an inherited disease
genotype [16]. MGMT encodes the DNA repair enzyme
Methylguanine-DNA Methyltransferase that removes alkylat-
ing lesions at O6 of guanine to protect against mutagenesis and
malignant transformation [29]. Its evolutionary conservation
suggests a fundamental role in cell physiology and genome
maintenance [30]. Animal studies showed association between
MGMT level of activity and tumorigenesis [31, 32]. While
MGMT deletions/mutations are rarely observed, MGMT hyper-
methylation has been found in many types of cancer including
breast and prostate cancer, lymphomas, gliomas, lung carcino-
mas, colorectal tumors and epithelial ovarian cancer [33-37].
MGMT epigenetic silencing leads to a mutator pathway in
human cancer, because the O6-methylguanine adducts produce
C:G to A:T transitions in other genes such as K-ras and TP53
[38—41]. However, MGMT epigenetic silencing has been also
described as a “predictive friend” since there is a strong and
positive correlation between MGMT hypermethylation and
increased tumor sensitivity to alkylating agents such as plati-
num compounds that are commonly used for RB treatment [42,
43]. On the contrary, patient RB#206 showed two relapses after
JET (10 cycles) and focal therapy (Table 1). Moreover, patient
RB#313 showed brain metastasis and died at 4 years and
5 months after 10 cycles of JET therapy. Unfortunately, we
could not collect metastasis biopsy and MS-MLPA analysis
could not be performed.

For the first time, our results indicate MSH6 aberrant
methylation (methylation range: 33—-100%) in RB samples
(6/12; 50%), mainly among unilateral cases (5 unilateral and
1 bilateral) (p=0.08) (Table 2). MSH6 is an important factor
of safeguarding genetic stability during replication [44, 45].
It is part of the mismatch repair (MMR) system that corrects
errors of DNA polymerases that escape their 3'>5'exonucleo-
lytic proofreading activity. It has also been implicated in the
cellular DNA damage response, activating cell cycle check-
point and apoptosis, and thus, alterations in this system can
have wide-ranging biological consequences [46, 47]. MMR-
defective cell lines are more resistant to cell death induced by
several DNA-damaging agents [48]. Genetic alterations of the
MSH6 gene have been found in many cancer types such as
colorectal and endometrial cancer [49-53]. Interestingly, we
found that most MSH6 promoter methylated cases (5/6;
83%) were also methylated in the MGMT gene (Table 2).
This might be due to a positive selection for cellular
clones bearing the two inactivation events, accelerating
the pathway driving to cancer development. Since muta-
tions in MMR genes are usually associated with a
microsatellite instability (MSI) phenotype, this might
also be the case in RB. Previous studies found MSI in
a subset of RB samples, but this phenotype was not
significantly associated with promoter hypermethylation
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of another MMR gene, namely MLHI [17, 54]. This
point would require further investigation in RB samples.

MS-MLPA also detected epigenetic changes in a transcrip-
tional factor, PAX5, whose hypermethylation was never
reported before in RB (Table 2). In particular, PAX5 promoter
hypermethylation (methylation range: 33—100%) was found
in five RB samples (5/12; 42%), 4 unilateral and 1 bilateral.
Previous reports have demonstrated PAX5 involvement in
human acute B-cell leukemia and lymphoma [55, 56], but
other studies have highlighted the importance of PAX5 also
in solid cancer such as breast and lung tumors and hepatocel-
lular carcinoma [57]. PAX5 is frequently inactivated by hyper-
methylation in tumors and acts as functional tumor suppressor
through direct regulation of the p53 signalling pathway [57].
Notably, an association between PAX5 and the underphos-
phorylated form of pRB has been shown by Sato et al. [58].
It is therefore possible to hypothesize that PAX5 hypermethy-
lation might represent an inactivating event of pRB signalling
that contribute to RB tumorigenesis.

The CD44 gene was hypermethylated (methylation range:
42-100%) in a significant fraction of RB samples (5/12;
42%), 3 bilateral and 2 unilateral. CD44 encodes a cell-
surface glycoprotein that may be associated with metastases
and therefore may be useful in the early detection of metastatic
potential in surgical biopsy samples and early detection of
recurrence in tumors [59, 60]. Among CD44 hypermethylated
samples, RB#313 displayed brain metastases (Table 1).

Three unilateral samples showed hypermethylation of
GATAS5 (methylation range: 28-70%)), a gene encoding a zinc
finger transcriptional regulator that has been demonstrated to
be inactivated in many cancer types such as lung, esophageal,
pancreatic, colorectal and gastric cancer (Table 2) [61-65].
Hypermethylation in the promoter regions of 7P53, VHL and
CDKN?2 was found in only one RB sample (Table 2). TP53
inactivating mutations have never been found in RB primary
tumors and this is the first study reporting a mild 7P53
epigenetic inactivation in RB [66]. Epigenetic inactivation of
VHL, a suppressor gene responsible for both hereditary and
sporadic cancer forms, has been never reported in RB and
might have important consequences in senescence induction
in a pRb-dependent manner [67]. Hypermethylation of
GSTP1, encoding one of the enzymes of the glutathione
Stransferases superfamily, might result in DNA damage and
mutations as already hypothesized in prostatic carcinogenesis
[68]. Aberrant promoter methylation of CDKN?2 (also known
as p16INK44), a key cell cycle regulator of the pRb pathway,
has been already reported in RB patients by Indovina et al.
[69].

Furthermore, we found a total of 29 copy number varia-
tions, mainly gains (19 duplications and 10 deletions) (Table 2).
Interestingly, copy number changes occurred more frequently
in unilateral cases respect to bilateral cases even if the small
sample size did not allow to reach statistical significance (p=

0.053). This is in accordance with previous data that showed a
higher chromosomal instability in unilateral cases, suggesting
that other molecular mechanisms could be implicated in
hereditary RB [8, 70].

Our data showed a gain of 7TNXB in five unilateral cases
(Table 2). In contrast with these results, it has been reported
that TNXB deficiency promoted tumor invasion and metasta-
sis in mice [71] and that TNXB downregulation was present in
NF1-associated tumors [72]. However, in previous study,
using array-CGH, we demonstrated that this duplication
involves the entire p arm of chromosome 6, a frequent
rearrangement characterising RB [70]. This rearrangement
included the three known oncogenes /RF4, DEK and PIM1
and the two members of the pRB pathway E2F3 and
CCND3, whose overexpression could be rather one of the
driving events of RB development [70].

Deletions involve the following tumor suppressor genes:
TP53, CDHI13, GATAS5, CHFR, TP73, IGSF4 and BRCA2. In
total, 7P53 has been found inactivated in two out of twelve
RB samples (17%), indicating that 7P53 direct inactivation is
not a frequent event in RB and supporting the notion that
subsequent amplification and increased expression of MDMX
likely suppress the p53 response in RB [73]. Differently,
inactivation of GATAS5 appeared to be a frequent event (3
methylated and one deleted sample) (Table 2). CDH13 is an
interesting candidate gene within 16q loss, a frequent rear-
rangement in RB [74]. Its downregulation has been associated
with diffuse vitreous seeding [75] and with poorer prognosis
in various cancers [76]. Actually, patient RB#253 is the only
one that showed vitreous seeding (Table 1). CHFR copy
number changes (2 losses and 1 gain) might alter its function
of mitotic checkpoint control and chromosomal stability
maintenance [77, 78]. Notably, Chkraborty et al. by micro-
array analysis demonstrated CHFR downregulation in RB
tissues [79]. TP73 has been found to be transcriptionally
silenced in some lymphoblastic leukemias and lymphomas
due to hypermethylation [80, 81]. /GSF4 expression has been
found downregulated in non-small-cell lung cancer, hepato-
cellular carcinoma and pancreatic cancer cell lines [82].
BRCA?2, involved in DNA-damage response, has been found
differently expressed in RB tissues [83].

In conclusion, MS-MPLA technique allowed us to perform
a study of epigenetic events and copy number variations in RB
tissues. Our data highlighted the importance of epigenetic
changes in RB and identified seven oncosuppressor genes
never associated before with the pathogenesis of RB: MSHG6,
CD44, PAXS5, GATAS, TP53, VHL and GSTPI. Since epige-
netic mechanisms are potentially reversible these findings
could provide new hints for the design of therapeutic strate-
gies in RB. Copy number variations have been found in
almost all samples but the genes involved often belong to
larger genomic rearrangements so that it is difficult to identify
factors actually driving RB tumorigenesis. Finally, in
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accordance with our previous study, copy number changes
have been identified more frequently in unilateral cases, sug-
gesting that other mechanisms could be involved in hereditary
RB [9].
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