
RESEARCH

Tímea Pócza & Anna Sebestyén & Eszter Turányi &
Tibor Krenács & Ágnes Márk & Tamás Béla Sticz &

Zsuzsanna Jakab & Péter Hauser

Received: 22 November 2013 /Accepted: 27 March 2014 /Published online: 16 April 2014
# Arányi Lajos Foundation 2014

Abstract As mammalian Target of Rapamycin (mTOR)
plays role in protein synthesis and metabolism, mTOR path-
way activation is involved in the pathogenesis of several types
of tumors. Our aim was to elucidate its role in medulloblasto-
ma in terms of prognosis and as a therapeutic target. Members
of activated mTOR complex 1 (mTORC1) pathway, phospho-
mTOR (p-mTOR) and phospho-S6 (p-S6) were examined by
immunohistochemistry in formalin fixed paraffin embedded
samples of 40 patients withmedulloblastoma, and results were
compared to clinical features and survival of patients. In
proliferation assays, Daoy and UW228–2 medulloblastoma
cell lines were tested by rapamycin, an mTORC1 inhibitor,
and NVP-BEZ235, a dual mTOR and phosphatidylinositol 3-
kinase (PI3K) inhibitor, each in monotherapy and in combi-
nation with cytostatic drugs (cisplatin, etoposide). Compo-
nents of mTORC1 and mTORC2 complexes were also exam-
ined in these cell lines. Neither presence of p-mTOR (32.5 %)
nor p-S6 (32.5 %) correlated with age, gender or histological
subtype. In 22.5 % of cases simultaneous expression of p-
mTOR and p-S6 was shown. Kaplan-Meier analysis showed
inferior survival of patients expressing both marker proteins,

but it was not statistically significant, probably due to low case
number. UW228–2 cells had greater sensitivity to mTOR
inhibitors, possibly due to its higher mTORC1 specific protein
expression levels, compared to Daoy cells. In both cell lines
antiproliferative effect of cytostatic drugs was significantly
enhanced by mTOR inhibitors (p<0.05). Based on our
in vitro and clinicopathological studies mTOR inhibitors
may have a role in the future treatment of a subset of patients
with medulloblastoma.
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Introduction

Medulloblastoma (MB) – a type of embryonal tumors – is the
most frequent malignant brain tumor in children. The name
covers a heterogeneous group of variants, different in origin,
histological appearance and molecular characteristics. Ac-
cording to the World Health Organization (WHO) there are
classic, desmoplastic, extensive nodular, anaplastic and large
cell variants [1, 2]. The current treatment (surgery, radiation
and chemotherapy) of MB is often accompanied by serious
side effects including neurocognitive impairment, psycholog-
ical and behavioral disturbances, secondary malignancies and
endocrinopathies [3, 4]. Five-year overall survival is 70–90%,
which is even worse in high risk patients [5, 6]. New diag-
nostic tools and targeted strategies may improve survival and
long-term quality of life.

Due to its central role in growth and metabolism, mamma-
lian Target of Rapamycin (mTOR) seems to be an important
factor in many types of cancer, making it a possible target for
cancer therapy. It is activated by receptor tyrosine kinases via
phosphatidylinositol 3-kinase (PI3K)-Akt pathway [7, 8].
mTOR – a serin-threonin protein kinase - can operate in two
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complexes called mTORC1 and mTORC2 [8, 9]. These two
complexes have different components: mTORC1 is character-
ized by Raptor and mTORC2 is characterized by Rictor [7–9].
The mTORC1 complex is rapamycin sensitive, participates in
protein and lipid synthesis, ribosome biogenesis and autoph-
agy, mainly mediated by p70 ribosomal protein S6 kinase
(rpS6K) and eukaryotic translation initiation factor 4E binding
protein 1 (4EBP1) [7–10]. mTORC2 can directly phosphory-
late Akt, and has a role in actin cytoskeleton controlling and
cell survival. It was thought to be resistant to rapamycin but
long-term rapamycin treatment may have indirect inhibitory
effect on mTORC2. Function and regulation of mTORC2 and
its response to rapamycin remain unclear, and may vary in
different cell types [7–11]. Rapalogs (rapamycin analogues)
and newly developed mTORC1/mTORC2 inhibitors and dual
PI3K/mTOR inhibitors were applied in several completed and
ongoing clinical trials in different types of cancer [8–10, 12].

Previous data suggest that there are some cases of MBs
with disregulated Akt and Erk pathways which may activate
mTOR signaling. Elevated Erk pathway was found by West-
ern blot, whereas Akt seems to be slightly upregulated. How-
ever few cases were included in these studies [13–15]. Dele-
tions of tuberous sclerosis 1 (TSC1), a growth inhibitory
protein, that indirectly inhibit mTOR were also found in a
small subset of medulloblastoma resulting in release of mTOR
inhibition [16, 17]. Data suggest that insulin-like growth
factor-mTOR signaling and Sonic hedgehog activation in
cerebellar granular precursor cells could interact and enhance
tumor formation [16–19]. mTORC1 inhibitor rapamycin and
its derivates seem to be effective in certain MB cell lines, its
effectiveness was also supported by in vivo experiments
[20–22]. We aimed to clarify the activity of mTORC1 by
examination of the presence of involved proteins (p-mTOR
and p-S6) and its correlation with histology and survival data
of patients with medulloblastoma. Effect of mTOR inhibitors
in medulloblastoma cell cultures, and mTOR pathway related
proteins were examined.

Methods

Human Tissue Samples and Clinical Data

Formalin fixed paraffin embedded MB tumor samples
were obtained from National Institute of Neurosciences
(Budapest, Hungary) and 1st Institute of Pathology and
Experimental Cancer Research, Semmelweis University
(Budapest, Hungary). The specimens were diagnosed
according to the criteria of the WHO. Primary tumors
of 40 patients operated between 2004 and 2010 were
examined. Clinical data of patients were obtained from
Hungarian Pediatric Cancer Registry. For survival anal-
ysis, Kaplan Meier estimated survival was applied.

Investigations were approved by the Institutional Ethical
Review Board (TUKEB no. 100/2012 and 155/2012).

In vitro Cell Cultures

Two human medulloblastoma cell lines were used: Daoy was
purchased from ATCC, UW228-2 was kindly provided Dr. J.
Silber (University of Washington, Seattle, WA, USA).

Daoy and UW228–2 cell lines were maintained in Mini-
mum Essential Medium Eagle, Alpha Modification (M8042,
Sigma, St. Louis, USA) supplemented with 10 % FCS
(Gibco), Gentamycin (Sandoz), sodium-pyruvate, non-
essential-amino acid solution and L-glutamine (Sigma, St.
Louis, USA) at 37 °C in humidified 5 % CO2 air.

Construction of Tissue Microarrays

Representative areas of human MB samples were selected by
reviewing haematoxylin and eosin slides of each case. In
addition as control, normal cerebellar tissues were included
in Tissue Microarray (TMA) blocks. We used computer con-
trolled TMA Master (3DHISTECH, Budapest, Hungary) in-
strument, core diameter was 2 mm.

Immunohistochemistry

TMA sections (4 μm) were deparaffinized and slides
were boiled in citrate buffer (pH=6.0) by an electric
pressure cooker for 20 min, cooled and washed in PBS.
p-mTOR (#2976, Cell Signaling, USA; dilution 1:100)
and p-S6 (#2211, Cell Signaling, USA; dilution 1:150)
primary antibodies were diluted in 3 % normal horse
serum containing PBS and incubated at room tempera-
ture for 1.5 h. Novolink Polymer Detection System
(Novocastra, Wetzlar, Germany) was applied to develop
antigens according to the manufacturer’s instructions.
Diaminobenzidine (DAB) (DAKO, Denmark) substrate
was used and sl ides were counterstained with
haematoxylin. Pannoramic Scan instrument and
Pannoramic Viewer program with TMA module soft-
ware (3DHISTECH, Budapest, Hungary) were used to
digitalize slides and analysis. For positive control colon
tumor and lymphoma tissues were used.

Daoy and UW228–2 cell cultures were trypsinized
and 100,000 cells were centrifuged on slides by
Cytospin (Shandon Scientific LTD). Cells were fixed
in 80 % methanol for 10 min. Then samples were
incubated with primary antibodies at 4 °C overnight in
a humidified chamber. p-mTOR (ab51044, Abcam,
Cambridge, UK), Rictor (ab56578, Abcam, Cambridge,
UK), Raptor (ab40768, Abcam, Cambridge, UK) and p-
S6 (#2211, Cell Signaling, USA) antibodies were dilut-
ed 1:100 in 3 % normal horse serum containing PBS,
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detection was done by Novolink Polymer Detection
System (Novocastra, Wetzlar, Germany) and DAB

(DAKO, Denmark) substrate followed by nuclear
counterstaining with haematoxylin.

Table 1 Clinical and pathological characteristics of patients

Case Histopathology Sex Age at disease
onset (Years)

Present state Overall survival
(Years)

cytoplasmic p-mTOR
positive cells (%)

cytoplasmic p-S6
positive cells (%)

1 Classic F 1.18 Dead 0.18 0 0

2 large cell/anaplastic M 7.84 Dead 1.47 1 30

3 desmoplastic F 5.99 Dead 4.56 0 0

4 Classic F 14.04 Dead 0.00 0 0

5 desmoplastic M 10.81 Alive 7.38 10 10

6 Classic F 3.31 Alive 7.27 0 90

7 Classic M 17.09 Alive 7.13 0 0

8 Classic F 10.09 Dead 3.07 5 20

9 desmoplastic M 14.54 Alive 7.04 0 0

10 Classic M 5.14 Dead 0.59 2 0

11 desmoplastic F 17.90 Dead 5.06 0 0

12 Classic M 3.11 Dead 0.92 2 40

13 desmoplastic F 4.71 Alive 6.52 0 0

14 Classic F 8.48 Alive 6.19 0 7

15 Classic F 14.28 Alive 6.17 5 70

16 desmoplastic M 6.63 Alive 5.60 0 0

17 large cell/anaplastic M 13.84 Dead 1.94 2 20

18 desmoplastic M 4.34 Dead 0.09 2 30

19 Classic M 8.56 Alive 4.80 0 0

20 desmoplastic M 2.59 Alive 4.61 0 0

21 Classic M 4.50 Dead 1.92 0 5

22 desmoplastic F 9.30 Alive 4.50 0 0

23 Classic M 6.81 Alive 4.39 0 0

24 Classic F 8.50 Alive 4.29 1 7

25 desmoplastic M 7.70 Alive 4.26 10 0

26 desmoplastic F 1.77 Alive 4.20 0 0

27 Classic F 4.92 Alive 4.12 3 40

28 desmoplastic M 22.90 N/A N/A 0 0

29 Classic M 10.76 Alive 3.96 0 0

30 desmoplastic F 21.43 N/A N/A 5 0

31 Classic M 7.92 Alive 3.47 0 0

32 Classic F 10.75 Alive 3.45 1 0

33 Classic F 1.78 Dead 0.48 0 0

34 Classic M 4.63 Alive 2.79 0 0

35 Classic M 28.25 Alive 2.72 0 0

36 Classic F 1.07 Alive 2.61 0 0

37 Classic F 2.84 Alive 2.51 0 0

38 Classic M 13.18 Alive 1.64 0 0

39 Classic F 28.69 N/A N/A 0 7

40 Classic M 9.68 Alive 1.51 0 0

F female

M male

N/A no available
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Evaluation of Immunohistochemical
and Immunocytochemical Reactions

Cytoplasmic presence of p-mTOR and p-S6 was evaluated in
human tumor samples. In each case 1,000 cells were counted
and percentages of immunopositive cells were calculated. For
further analysis, slides were regarded as positive if
immunopositive cells are≥1 %.

Cells in each cell culture were stained homogeneous-
ly, evaluation of reactions in MB cell culture based on
the intensity of staining (0/negative; +/weak; ++/moder-
ate and +++/strong).

Drugs and Treatments

Daoy or UW228–2 cells were seeded in 96-well plates (3×103

cells/well). After 24 h media was refreshed and cells treated for
72 h by drugs. The mTORC1 inhibitor rapamycin (Sigma)
(applied doses were 0.5, 5 and 50 ng/ml) and the NVP-
BEZ235 (Cayman Europe, Estonia) PI3K and mTORC1/C2
inhibitor (applied doses: 0.1 and 1 μM) were tested. Slightly
effective doses were applied, selection of concentration was
based on pre-experiments. Drugs were applied in combination
with cytostatic drugs: cisplatin (Ebewe Pharma, Austria)
1 μM for both cell lines and etoposide (Ebewe Pharma,

Fig. 1 Representative
immunohistochemical stainings
of human medulloblastoma
samples are shown (a) missing p-
mTOR expression (b) sample
with presence of p-mTOR
expression (c) missing p-S6
expression (d) sample with
presence of p-S6 expression.
Magnification: 40×

Table 2 Comparison of p-mTOR/p-S6 negative and positive samples according to pathological characteristics

p-mTOR negative p-mTOR positive p value p-S6 negative p-S6 positive p value

Case number (%) 27 (67.5 %) 13 (32.5 %) 27 (67.5 %) 13 (32.5 %)

Age years (median) 7.9 8.5 0.97a 7.9 8.5 0.59a

Gender

Male 15 (37.5 %) 6 (15.0 %) 0.74b 14 (36.8 %) 5 (13.2 %) 1.00b

Female 12 (30.0 %) 7 (17.5 %) 13 (34.2 %) 6 (15.8 %)

Histological subtype

Classic 16 (42.1 %) 9 (23.7 %) 0.27b 18 (47.4 %) 7 (18.4 %) 1.00b

Desmoplastic 11 (28.9 %) 2 (5.3 %) 9 (23.7 %) 4 (10.5 %)

Large cell/anaplastic 0 (0.0 %) 2 (100.0 %) # 0 (0.0 %) 2 (100.0 %) #

aMann–Whitney U-test
b Fisher exact test, two-tailed

# not applicable
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Austria) 0.1 μM for UW228–2 or 1 μM for Daoy according to
their IC10–20, based on pre-experiments. Each experiment
was performed in triplicate.

Proliferation Assays

Cell proliferation was evaluated by MTT (3-(4,5-Dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Sigma, St.
Louis, USA) assay after 72 h by method described in manu-
facturer’s protocol.

Statistical Analysis

Statistical analyses were carried out with Statistica 9.0 software
(StatSoft). Correlation between p-mTOR and p-S6 was tested
by Spearman rank order test. We analyzed correlation of p-
mTOR and p-S6 expression with age (Mann–Whitney U-test),
gender and histological subtype (Fisher’s exact test) according.
At survival analysis for statistical evaluation log rank test was
applied. Samples with co-expression of both markers were
defined as with activated mTORC1 pathway, any other cases
were considered as samples without mTORC1 activity.

In cell culture study for comparison of different treatments
two tailed t-test was used. Statistically significant difference
was regarded as p<0.05.

Results

Patients’ Characteristics

Median age of patients was 8.2 years (from 1.1 years through
28.7 years). Female to male rate was 21:19. Classic,
desmoplastic and large cell/anaplastic medulloblastoma were
62.5 %, 32.5 % and 5.0 % of samples, respectively. Median
follow up time of survival was 4.0 years (survival dates were
available in 92.5 % of cases). All patients were treated ac-
cording to the Hungarian MBL2004/2008 schedule [23]. (Pa-
tients data are shown in Table 1.)

mTOR Activity in Human Samples

Expression of p-mTOR was observed in 32.5 % of cases and
the ratio of expression of p-S6 was the same. Simultaneous
positivity (p-mTOR and p-S6) was present in 9 samples
(22.5 %). Representative stains are shown in Fig. 1.

Expression of p-mTOR and p-S6 showed strong correlation
(R=0.55; p=0.0002). Neither of them showed correlation with
age (p=0.97 and p=0.59, respectively) or gender (p=0.74 and
p=1.00, respectively). 81.8 % of p-mTOR positive cases were
classic, and 18.2 % were desmoplastic, 63.6 % of p-S6 positive
cases were classic MB and 36.4 % were desmoplastic. Both of
large cell/anaplastic samples were positive for p-mTOR and p-

S6. Correlations of these proteins with histological subtype could
be evaluated only in classic and desmoplastic subtypes.

Fig. 2 Estimated overall survival of patients in terms of the presence of
mTORC1 by Kaplan-Meier method. mTORC1 positive cases (N=9)
(defined by coexpression of p-mTOR and p-S6) have lower survival rate
compared to mTORC1 negative cases (N=27) (p=0.12)

Fig. 3 Effect of mTOR inhibitors, rapamycin (a) and NVP-BEZ235 (b)
in MB cell lines (Daoy and UW228–2) compared to untreated control.
UW228–2 cells show higher sensitivity for rapamycin and NVP-BEZ235
than Daoy cells. Daoy cells were not sensitive for rapamycin in applied
doses (Graphs show one representative experiment of the triplicate)
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Expression of p-mTOR and p-S6 did not show correlation with
histological subtypes (p=0.27 and p=1.00, respectively)
(Table 2).

Nuclear p-mTOR staining (18 cases out of 40) was
also observed. Several authors describe nuclear mTOR
presence, but its role desires further investigation
[24–26], hence, our analysis did not focus on nuclear
staining.

Kaplan-Meier estimated survival shows that patients pre-
senting mTORC1 activity (N=9; 24.3 %) have lower overall
survival rate compared to patients with inactive mTORC1
(N=28; 76.7 %) without statistical significance (p=0.12)
(Fig. 2).

mTOR Activity in Medulloblastoma Cell Lines

Proliferation Assay

Inhibitory effect of mTORC1 inhibitor rapamycin and
dual inhibitor NVP-BEZ235 were tested in two MB cell
lines (Daoy and UW228–2) with doses selected accord-
ing to previous studies [21]. UW228–2 cell line shows
higher sensitivity to rapamycin and NVP-BEZ235 than
Daoy cell line. Rapamycin has only slight proliferation
inhibitory effect even at 50 ng/ml dose in Daoy cells
(Fig. 3). mTOR inhibitors were combined with cytostatic

drugs, cisplatin and etoposide. Rapamycin and NVP-
BEZ235 significantly enhanced their cytostatic effect in
both cell lines, especially of cisplatin in Daoy cell line
(p<0.05) (Fig. 4).

Immunocytochemistry

Immunocytochemical analysis of p-mTOR and p-S6, Rictor
and Raptor were performed in both MB cell lines. Daoy cells
showed strong p-mTOR, moderate p-S6, weak Raptor and
strong Rictor positivity. UW228–2 cells were strongly posi-
tive for all examined proteins. These results indicate weak
mTORC1 and elevated mTORC2 activity in Daoy cells,
whereas both complex activities were elevated in UW228–2
cells.

Discussion

Medulloblastoma is a heterogeneous group of childhood brain
tumors and several pathways were implicated in its develop-
ment like Shh, Wnt, Notch and receptor tyrosine kinase sig-
naling [1, 2, 27]. Here, we examined mTORC1 activation in
MB. The upstream signaling for mTOR activation is derived
from growth factors through tyrosine kinase receptors or
altered metabolic status. mTORC1 could be activated through

Fig. 4 Combined treatment of mTOR inhibitors (rapamycin and NVP-
BEZ235) and cytostatic drugs (cisplatin and etoposide) in MB cell lines
(Daoy and UW228–2). Proliferation was compared to untreated cells. In
both cell lines proliferation was significantly inhibited by combined

treatment: (a) cisplatin combined with rapamycin (b) cisplatin combined
with NVP-BEZ235 (c) etoposide combined with rapamycin (d) etoposide
combined with NVP-BEZ235 (Graphs show one representaive experi-
ment of the triplicate evaluated by two-tailed t-test) *denotes p<0.05
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Akt or Erk transmitted signals [8, 28] which could contribute
to MB development [27, 29].

In our cohort of primaryMBs we have found a small subset
showing mainly weak mTORC1 activity (with co-expression
of p-mTOR and p-S6). There was a tight correlation between
expression of p-mTOR and p-S6 suggesting mTORC1 activ-
ity in samples expressing these proteins. Neither p-mTOR nor
p-S6 expression showed correlation with age or gender. Ad-
ditionally, mTORC1 activity did not correlate with histologi-
cal subtype.

Patients with active mTORC1 pathway have worse out-
come than those with inactive pathway, the difference was not
significant. Due to the limitation of cases with same treatment
in Hungary, this question could not be answered more accu-
rately. mTOR pathway activation was described as a poor
prognostic factor in several type of tumors: glioma [30],
glioblastoma [31], leiomyosarcomas [32], diffuse large B-
cell lymphomas [33], colorectal cancer [34] and oral cancer
[35].

MB tumor cell lines show different sensitivity to mTOR
inhibitors [21, 36]. This was also observed in other type of
tumors, for instance in breast cancer cells [37]. We tested
rapamycin (bind to FKBP-12 protein, thereby inhibit Raptor/
mTOR association and prevent mTORC1 action) and NVP-
BEZ235 (dual PI3K/mTOR kinase inhibitor joining ATP-
binding site of these enzymes, blocking both mTORC1 and
mTORC2 complexes) in two MB cell lines, Daoy and
UW228–2 [8, 38]. According to published data both cell lines
expected to be sensitive [21, 36]. UW228–2 cells showed
greater sensitivity to both drugs than Daoy cells. In contrast
to Geoerger et al. [21] we have found that Daoy cell line was
resistant to rapamycin.

In the aspect of personalized and targeted therapy, a crucial
question is which markers are able to predict therapeutic
response [39]. Expression of mTOR pathway components
may predict sensitivity to mTOR inhibitors, hence we tested
these markers on MB cell lines. Raptor and p-S6 expression
were higher in UW228–2 cell line than in Daoy cells, indicat-
ing that UW228–2 cell line is more sensitive to mTORC1
inhibitor rapamycin. The amount of Rictor is high in both cell
lines suggesting that NVP-BEZ235 (inhibits not only
mTORC1 but also mTORC2 complexes) may have antipro-
liferative effect in both cell lines. NVP-BEZ235 was more
effective in UW228–2 cells. The results of proliferation tests
showed the expected effects based on the expression of these
proteins.

Rapamycin and NVP-BEZ235 significantly enhanced the
effect of etoposide and cisplatin in Daoy and UW228–2 cell
lines. The strongest interaction was observed in Daoy cells
where cisplatin was combined with mTOR inhibitors. These
results suggest that co-administration of mTOR inhibitors
with certain cytostotic drugs may have rationale in future
treatment in a subgroup of MB patients.

In conclusions, mTORC1 pathway is activated in a small
subset of MBmostly with weak activity. Our survival analysis
suggests prognostic role of the presence of activated mTOR
pathway inMB, which should be confirmed in a higher cohort
of patients. Our in vitro results support previous findings, and
indicate that mTOR inhibitors augment the effect of chemo-
therapy inMB in presence of activated mTORC1 pathway in a
synergistic way, which should be proved in further preclinical
experiments.
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