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Abstract
Large investments by pharmaceutical companies in the development of new antineoplastic drugs have not been resulting in
adequate advances of new therapies. Despite the introduction of new methods, technologies, translational medicine and bioin-
formatics, the usage of collected knowledge is unsatisfactory. In this paper, using examples of pancreatic ductal adenocarcinoma
(PaC) and castrate-resistant prostate cancer (CRPC), we proposed a concept showing that, in order to improve applicability of
current knowledge in oncology, the re-clustering of clinical and scientific data is crucial. Such an approach, based on systems
oncology, would include bridging of data on biomarkers and pathways between different cancer types. Proposed concept would
introduce a new matrix, which enables combining of already approved therapies between cancer types. Paper provides a (a)
detailed analysis of similarities in mechanisms of etiology and progression between PaC and CRPC, (b) diabetes as common
hallmark of both cancer types and (c) knowledge gaps and directions of future investigations. Proposed horizontal and vertical
matrix in cancer profiling has potency to improve current antineoplastic therapy efficacy. Systems biology map using Systems
Biology Graphical Notation Language is used for summarizing complex interactions and similarities of mechanisms in biology
of PaC and CRPC.
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Introduction

Current knowledge of cancer biology shows that all cancer
types share a number of similarities in the mechanisms of their
etiology and progression. On the one hand, such cancer biol-
ogy poses a significant problem to the discovery of specific
biomarkers for early detection of different cancer types. On
the other hand, it provides an opportunity for another applica-
tion of current antineoplastic therapy in those cancer types for
which a form of therapy was not initially developed.

Cancer initiation and progression is a complex network of
mechanisms in which genome and epigenome alterations, re-
ceptor and hormone levels, glycosylation and immunological
response pay crucial role. In order to make a horizontal compar-
ison between two cancer types we selected PaC and CRPC due
to (a) still unsatisfactory therapy options and low overall surviv-
al for both cancer types, (b) challenging similarities in the impact
of sex hormones on their biology and (c) diabetes as a chronic
disease which appears to have a significant role in both cancer
types either in their etiology or as a side effect of therapy.

In men, prostate cancer (PC) is the 6th and PaC the 8th
cause of death from neoplastic diseases worldwide [1]. The
global incidence rate of CRPC and PaC is the same, 8 per
100,000 person years [2, 3].

Castration-resistant prostate cancer (CRPC) is an advanced
form of PaC in which, despite deprivation of testosterone,
progression occurs. Reactivation of AR in CRPC after testos-
terone deprivation may be explained by (a) mutations or splic-
ing events to its ligand-binding domain, which facilitates the
appearance of a promiscuous receptor that may be activated
by other molecules including various steroid hormones and
antiandrogens [4], (b) amplification of the AR gene, which
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is detected in 30% of tumor samples, accompanied by an
increase in AR stabilization [5], (c), high intraprostatic levels
of testosterone [6–9] resulting in paracrine and autocrine sup-
ply of androgens sufficient for CRPC promotion.

Biology of PaC is poorly understood but it is associated
with pancreatitis, smoking and stress [10]. It is a highly ag-
gressive neoplasm. Although genomic instability, aneuploidy
and mutations in KRAS, CDKN2A, TP53 and SMAD4/
DPC4 are associated with PaC etiology and progression, these
are nevertheless still poorly understood [11, 12].

Diabetes is one of landmarks, which links PaC and CRPC.
Diabetes is a major systemic side effect of androgen depriva-
tion therapy in CRPC and diabetes is a risk factor for devel-
opment of PaC [13, 14].

Both CRPC and PaC are associatedwith poor survival rates
due to limited therapy efficiency. PC incidence increases dur-
ing aging, when serum testosterone levels decrease but estro-
gen level remains constant, which may suggest that the estra-
diol vs testosterone ratio, rather than serum levels of each
steroid, is crucial in PC development [15]. Similarly, PaC’s
highest incidence has also been measured during postmeno-
pausal period [16] but the impact of the estradiol vs testoster-
one ratio on PDAC’s increased risk has never been studied.

Epithelial to mesenchymal transition, that means trans-dif-
ferentiation, which involves AR mechanism – is another key
mechanism in progression of both cancer types [17].

The aim of this study is to show a new concept based on
system oncology [18], which may enable the mirroring of
antineoplastic therapy between two entirely different cancer
types. Biology of PaC and CRPC is compared using literature
without any limits in terms of time of publication, with reliable
statistical methods and study models. Case reports were not
included.

Rationale

Literature search revealed over 30 different molecules that are
similar between PaC and CRPC [Table 1]. The profiling of
pathways in which thesemolecules are involved clearly shows
that androgen and estrogen receptors have a prevalent role in
most of these and that diabetes is a chronic disease which may
present a risk factor in both cancer types, either in their etiol-
ogy or in progression.

Similarities in pathological processes between organs usu-
ally stem from their common embryology and developmental
processes. From developmental standpoint, pancreas has en-
dodermal origin [19]. Some of key regulator factors in pan-
creas development are Sox9+, Neurogenin3 (Ngn3), a basic
helix-loop-helix (bHLH) transcription factor, Hedgehog sys-
tem, the home box gene Pdx1, Wnt and Notch signaling
[20–25]. In prostate cancer, which also originates from endo-
derm [26], during embryonal development Sox9+, Notch,

bHLH and Hedgehog system also play a significant role
[27–30]. Mechanisms and factors crucial for intrauterine de-
velopment of both organs also take part in their carcinogenesis
[27, 29, 31, 32]. Thus, for example, the progression of PaC
and the transition of prostate cancer towards CRPC are or-
chestrated by an aberrant activation of Wnt, followed by en-
hanced expression of AR target genes [33–35].

PC and PaC are adenocarcinomas continuously dependent
on a balanced axis between androgenic and estrogenic stimu-
lation as evidenced by the presence of these receptors in all
stages of these diseases [36, 37]. It is shown that estrogen can
activate AR target genes, such as MMTV-long terminal repeat
or prostate-specific antigen, in the presence of wild-type AR
and the cofactor ARA70 (NCOA4) [38]. This synergistic ef-
fect may also be important in maintaining tumor androgen-
receptor levels in pancreatic adenocarcinoma patients in
whom circulating androgen levels are low and estradiol levels
are raised compared to age- matched healthy controls [39, 40].

Both cancer types have an increased Prostate Specific
Antigen (PSA), which belongs to the family of kallikrein
[klk], and both klk3 (prostate) and klk7 (PaC) are androgen
dependent [41–43]. The association of KLK7 expression and
poor outcome of PaC suggests that inhibiting either KLK7
expression and/or activity could be a therapeutic strategy
[43]. Gain in PC and PaC at 19q13, the location of klk3 and
klk7 genes, and subsequent overexpression of the genes were
associated with poorer survival [44–46].

Blockage of ARs does not inhibit growth of CRPC and
PaC cells over a longer period of time [47]. The AR variant
7 (AR-V7) is a PC-specific AR isoform that is ligand inde-
pendent [48]. There is still no data on the presence of AR-V7
in PaC. It is shown, however, that Polo-like kinase 1 (Plk1)
inhibitor suppresses the growth of AR-V7 positive PC cells
[49]. Plk1 is also a significant regulator of PaC cells prolifer-
ation [51, 52]. Thus it could be suggested that future investi-
gations of PDAC should focus on the presence and interaction
between AR-V7 and Plk1. Iinhibition of Plk1 enhances effi-
cacy of antidiabetic drug metformin against the progression of
androgen-dependent PC to its castration-resistant stage [50].

S ame a s i n PaC , i n PC h i gh l e v e l s o f 5α -
dihydrotestosterone that activate AR and promote tumor pro-
gression have been observed [53, 54]. Both cancer types prob-
ably share the same mechanism of testosterone production
bypassing, which in both cases have low levels [53]. Themain
route of dihydrotestosterone synthesis in CRPC, by which
testosterone is bypassed, goes via 5α-reduction of androstene-
dione to 5α-androstenedione, aftermath converted to dihydro-
testosterone [55].

There are three estrogen receptor types which are expressed
in tumor tissue. In PaC, estrogen receptor alpha [ERα] is
mostly stromal whereas estrogen receptor beta (ERβ) is dif-
ferentially expressed in prostate epithelium during carcino-
genesis [56, 57]. Estrogen receptor GPR30 expression is
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significantly higher in CRPC than in androgen-sensitive PC
same as it is revealed that GPR30 levels are increased in PaC
[37, 58]. Androgen depletion therapy does not destroy
estrogen-dependent cells, which may have given rise to
CRPC tumors. Thus, androgen depletion therapy is suggested
to be insufficient and concurrent androgen and estrogen abla-
tion is recommended, accompanied with the inhibition of se-
lected steroid biosynthetic enzymes [59].

The activation of AR in PC occurs through IL-6, which
increases the phosphorylation of transcription 3 signaling
(STAT3) and MAPK, which in turn increases the activation
of AR [60]. The IL-6 effect is mediated by the transducer and

activator of STAT3, which is considered to have important
oncogenic functions in PC [61]. The neuroendocrine pattern
is more present in CRPC than in early stages of PaC [17, 62,
63]. In mice, it is shown that the isoflavonoid icaritin sup-
presses the development of neuroendocrine differentiation of
PaC through inhibition of IL-6/STAT3 and Aurora kinase A
pathways [17]. Other isoflavonoids, such as genistein, are
shown to suppress metastatic progression of PaC [64]. Both
genistein and icaritin are phytoestrogens [65]. IL-6/signal
transducer and STAT3 are suggested to have important onco-
genic functions in PC [61]. The IL-6/GP130/STAT3 pathway
is crucial for tumorigenesis in multiple cancer types, including

Table 1 Similarities in receptor, membrane proteins and enzyme levels between PDAC and CRPC

Hormon/Protein/Gen molecule characteristic Pancreatic cancer Castration-resistant prostate cancer Reference

LHRH Luteinizing hormone high high (therapy) [114]

Estradiol high high/low [36, 115]

5 alpha reductase high high [116, 117]

Androstenedione high high [54, 118]

Testosterone low low [40, 91]

5α-dihydrotestosterone high high [53, 54]

Androgen receptor (AR) high high [60, 119]

ERα (еstrogen receptor alpha) positive low [119, 120]

ERβ (estrogen receptor beta) low low [119–121]

CYP19A1(aromatase) high high [116, 122]

Kallikrein 3 high high [123, 124]

HER2 overexpressed overexpressed [88, 89, 125, 126]

SRC3 high high [65, 127]

GPR30 high high [37, 58, 128]

19q13 gain gain [44, 45]

IL-6 high – [67, 61, 129]

P300 caused by chemotherapy present [68, 69]

CDKN2A(p16) inactivated inactivated [130, 131]

P53 loss loss [132, 133]

MUC1 expressed expressed [134, 135]

Sox9+ high overexpressed [136, 65]

STAT 3 activated activated [61, 137]

CTNNB1 present present [138, 139]

CXCR4 present present [140, 141]

FOXA 1 low low [52, 142]

WNT aberrant activation aberrant activation [33, 34]

TWIST1 high high [143, 144]

IGFBP-1 high high [100, 145]

CYP19A1(aromatase) Cytochrome P450 family 19 subfamily A; Kallikrein 3 (kallikrein related peptidase 3),KLK3, APS, PSA, hK3, KLK2A1;
HER2,ERBB2 (erb-b2 receptor tyrosine kinase 2), CD340, TKR1, erb-b2; SRC3 NCOA3 (nuclear receptor coactivator 3),ACTR, AIB1, RAC3, pCIP,
AIB-1, CTG26, CAGH16, KAT13B, TNRC14, TNRC16, TRAM-1, bHLHe42;GPR30GPER1 (G protein-coupled estrogen receptor 1), mER, CEPR,
GPER, DRY12, FEG-1, LERGU, LyGPR, CMKRL2, LERGU2, GPCR-Br; IL-6 (interleukin 6); FSH (Follicule stimulating hormone); P300,(E1A
binding protein), HGNC:3373, KAT3B, RSTS2;;KRT18 keratin 18, K18, CK-18, CYK18; CDKN2A(p16) (Cyclin dependent kinase inhibitor 2A),
ARF, MLM, P14, P19, CMM2, INK4, MTS1, TP16, CDK4I, CDKN2, INK4A, MTS-1, P14ARF, P19ARF, P16INK4, P16INK4A, P16-INK4A; P53
(TP53 tumor protein); MUC1(mucin 1, cell surface associated); Sox9+,(SRY-box 9), CMD1, SRA1, CMPD1, SRXX2, SRXY10; STAT3 (signal
transducer and activator of transcription 3); CTNNB1 (catenin beta 1); CXCR4 (C-X-C motif chemokine receptor 4); FOXA 1 (Forkhead box A1),
HNF3A,TCF3A; WNT (protein Wnt-2); TWIST1 (Twist family bHLH transcription factor 1),CRS, CSO, SCS, ACS3, CRS1, BPES2, BPES3,
bHLHa38; IGFBP-1 (Insulin growth factor binding proteins 1)
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PaC and presents a viable target for cancer therapy. STAT3 is
one of the major downstream effectors of IL-6/GP130.
Additionally, IL-6 also increases the expression of genes in-
volved in testosterone biosynthesis in the absence of exoge-
nous steroid precursors via AKR1C3, which is also a charac-
teristic of PaC [55, 66]. Importantly, IGF-I and IL-6may act in
a synergistic manner in PaC cells [67].

Androgen receptor co-activators SRC3 and p300 are
overexpressed in PaC [68, 69]. The role of p300 in PaC is still
not elucidated but it is shown that SRC is a significant medi-
ator of oncogenic hormone receptor signaling in pancreatic
cancer where it promotes the expression of ER or AR [70].
Activation of SRC kinase has been linked to androgen-
independent cell growth, inhibition of anti-apoptotic path-
ways, cell migration and adhesion, and tumor invasion,
among other aspects of PC cell biology [68].

There is an interplay between diabetes, PaC and PC, which
is one of the risk factors for PaC [71] and PC. It is even
suggested that prostate cancer is one aspect of the insulin
resistance syndrome [72]. Patients with diabetes progress
faster to CRPC than those without diabetes [73].
Homozygous GG carriers of the sex hormone binding hor-
mone +5790 G >A, which is suppressed by insulin have in-
creased risk of developing CRPC [74, 75]. Androgen depri-
vation therapy in PC patients is associated with an increased
risk of diabetes [76]. Metformin, an oral diabetes medicine,
which is already shown to be promising in treatment of PaC is
also candidate for treatment of CRPC. In both cancer types
metformin acts via activation of the AMP-activated protein
kinase (AMPK) [77–79].

Hypothyroidism is associated with a higher risk of PaC and
antiandrogen therapy in CRPC [80, 81]. A significant increase
in TSH and a decrease in FT4 serum level were detected in PC
patients under testosterone deprivation therapy [82].
Additionally, an increase in TSH is a biomarker of good re-
sponse to antiandrogen therapy in PC patients [83].

HER-2 (erbB-2) belongs to the family of Type I receptor
tyrosine kinases and its overexpression is important in the
pathogenesis and progression of many tumors [84].
Androgen-independent sublines of LAPC-4 PC cells express

high levels of HER 2, which activates the AR pathway at low
levels of androgen and increases AR signaling [85]. In PaC,
overexpression of HER 2 is observed and correlates with
lymph node metastases [86]. It is interesting that activation
of HER 2 causes suppression in insulin signaling [87]. HER-
2 overexpression in patients with PaC is an independent factor
for a worse prognosis, while men with PC HER-2 (+) cells are
resistant to treatment [88, 89].

Male PaC patients are reported to have increased levels of
FSH LH and estradiol and lower levels of progesterone and
testosterone while female patients have increased levels of es-
tradiol and lower levels of LH, FSH and progesterone, than the
controls. These results show dysfunction of the hypothalamic-
hypophysial-gonadal axis in PaC [40, 90, 91]. In PC, higher
levels of FSH are a predictor of faster transition towards CRPC
[92]. This suggests that FSH may have a mitogenic effect on
PC cells [93], while low LH is caused by LHRH antagonist
therapy [94] and this shows similar importance of
hypothalamic-hypophysial-gonadal axis as found for PaC.

The transcription factor FOXA 1 modulates ER and AR
during embryonal development of prostate and pancreas [95]
and in PC it directly inhibits AR expression. The loss of
FOXA 1 enables aberrant AR activation in the very low an-
drogen environment [96]. In PaC, low FOXA 1 launches
epithelial-to-mesenchymal transition [52]. Additionally,
Aurora kinase A [AURKA]-Twist1 is a significant axis in
promoting epithelial-to-mesenchymal transition and chemo-
resistance in PC [97].

The TWIST1 methylation level is significantly higher in
PaC compared to non-neoplastic pancreatic tissues [98].
Oxidative stress caused by castration seems to promote AR
overexpression through Twist1 overexpression, which may
result in a gain of castration resistance [99]. By activating
STAT3 and Twist1, the insulin growth factor induces PC path-
ogenesis [100]. Additionally, Twist1/AR signaling is aug-
mented in CRPC pointing to a significance of crosstalk be-
tween epithelial-mesenchymal transition and castration resis-
tance [101].

The activated Ack1 (TNK2), an oncogenic kinase which
regulates the activity of AR, correlates with the severity of

Fig. 1 Common pathways in PaC
and CRPC related on AR using
Activity Flow language of
Systems Biology Graphical
Notation
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PDAC and supports development of CRPC [102]. The ab-
sence of ER, as seen in a triple negative breast cancer or
CRPC, increases expression of ACK1 via SIAH2 [103].

In both CRPC and PaAC, L-type amino-acid transporter 1
(LAT1) is overexpressed [104, 105]. In CRPC, this is caused
by androgen deprivation and decreased androgen signaling
but the mechanism in PaC is unknown [105].

The proviral integration site for Moloney murine leukemia
virus-1 PIM kinases belongs to a family of serine/threonine
kinases and its downregulation causes cell cycle arrest, in-
creased apoptosis and decreased gemcitabine and intrinsic ir-
radiation resistance in pancreatic cancer cell lines. Pim 1 is
increased both in PC and PaC [106, 107] and it is shown to be
activated by IL6 in pancreatic cell line models [108]. Both
PIM-1 isoforms promote PC cell growth under low-
androgen conditions [109, 110], which is also reported in an
animal model in which androgen deprivation significantly in-
creased PIM 1 levels [111].

Aryl hydrocarbon receptor (AhR) is active in CRPC and in
the most invasive sub-type of PaC cells (QM-PDA). Its inhi-
bition reduced growth and the selective modulators inhibited
invasion through a non-genomic AhR pathway [112].

In order to summarize the collected data on the common
pathways in PaC and CRPC related onAR are presented using
Activity Flow language of Systems Biology Graphical
Notation (Fig. 1) [113]. Map shows the interaction of ARwith
other molecules described in this paper, known to have a sig-
nificant role in the aetiology and progression of PaC and
CRPC.

Conclusion

All cancer types share a large number of commonmechanisms
such as disturbance of estrogen levels and its receptors, poly-
morphisms of genes associated with DNA repair or cytokine
levels. A growing body of evidence indicates that there are
more similarities than differences in cancer biology, which is
an advantage for therapy but a disadvantage for diagnostics
and follow-up of patients after completed therapy. During the
last decade, chemotherapy development has shown slowing
down in terms of new solutions and immunotherapy due to
still unforeseen long and short term side effects and hence it
still does not offer a reliable new approach. Large number of
biomarkers, key molecules that are positioned at cancer check
points, are in the process of investigation but their roles in
different cancer types are anecdotally rather that systematical-
ly compared. Such a significant gap in horizontal profiling of
cancer biology may hide new options for understanding better
the efficacy of the application of available therapy types.

This study suggests that PC due to androgen deprivation
therapy evolves to CRPC, a cancer which has significant sim-
ilarities with PaC, as well as with diabetes, a common chronic

disease in their etiology or progression. PaC and CRPC share
a number of commonmechanisms and metabolic disturbances
such as levels of estrogen and androgen receptors, growth
factors, membrane proteins, and genetic profile. Such similar-
ities give rise to the investigation of the application of pancre-
atic cancer therapy also to CRPC and vice versa. The pro-
posed matrix of similarities between these two cancers pro-
vides a tool for similar analysis of other cancer types. It may
also significantly add value and cut costs in the pharmaceuti-
cal industry and oncology.

As an important additional conclusion, which should be
stated, data collection was troubled by the change in proteins’
and genes’ nomenclature during the past few decades.
Development of unified nomenclature is crucial as all future
studies sharing a similar concept will be done by software
which requires clear semantics.
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