REVIEW

Aquaporins 1, 3 and 5 in Different Tumors, their Expression, Prognosis Value and Role as New Therapeutic Targets

Mahdieh-Sadat Moosavi¹ · Yalda Elham¹

Received: 4 December 2018 / Accepted: 19 March 2019 / Published online: 29 March 2019 ${\rm (}\odot$ Arányi Lajos Foundation 2019

Abstract

All different types of metabolism of tumors are dependent on the flow of water molecules through the biological membrane, where fluid transfer interceded by aquaporins (AQPs) are the basis means for water entrance into the cells or outside them. Aquaporins play other roles including cellular migration, cellular expansion and cellular adhesion facilitation. Therefore, regulators of AQPs may be useful anticancer agents. Medline, Scopus, Embase, and Web of Sciences were searched. From among the papers found, 106 were related to the subject. All of the examined cancers in relation to AQP1 included adenoid cystic carcinoma, bladder, breast, cervical, colon, colorectal, hepatocellular, lung, ovarian, plural mesothelioma, prostate, renal cell carcinoma and squamous cell carcinoma. All of the studied cancers in relation with AQP3 included gastric, breast, prostate, lung, pancreas, skin, bladder, squamous cell carcinoma, cervical, adenoid cystic carcinoma, colon, colorectal, negative, and gastric cancers. Over or under-expression of AQP1, 3 and is exist in the mentioned cancers across different studies. Over-expression of AQP1, AQP3 and AQP5 is clearly associated with carcinogenesis, metastasis, reduced survival rate, lymph node metastasis, poorer prognosis, and cellular migration. Also, cancer treatments in relation to these markers suggest AQP reduction during the treatment.

Keywords Aquaporin · Cancer · Prognosis

Introduction

Cancer, which is a malignant tumor, is a category of diseases that includes irregular cellular development with a possibility of aggression or spreading within various body parts. Cells known as tumor cells may infiltrate the adjacent area where other tissues reside (aggression) or they can relocate to body parts further away (metastasis). All different types of metabolism of tumors are dependent on the flow of water molecules through the biological membrane, where fluid transfer interceded by aquaporins (AQPs) are the basis means for water entrance into the cells or outside them. Thus, aquaporins can

Yalda Elham
 y-elham@razi.tums.ac.ir
 Mahdieh-Sadat Moosavi

ms-moosavi@sina.tums.ac.ir

play a significant part concerning metastasis, development and angiogenesis of tumors [1]. Aquaporins structure and functionality, their significance in regard to water physiology and solution movement, in addition to evidence support aquaporins as pharmacological targets is well known [2].

AQPs are attractive targets to complement pharmacotherapy for disorders involving improper water motion including kidney and edema diseases particularly tumors [1].

Aquaporins play other roles in addition to the maintenance of water balance, including cellular migration, cellular expansion and cellular adhesion facilitation [3]. Therefore, regulators of AQPs may be useful anticancer agents [4].

Generally, aquaporins are overexpressed by tumor cells, namely aquaporins which are typically seen in origin cells, in addition to AQPs expressed in cellular plasma membrane and cytoplasm. Often, there is a significant association between aquaporins expression and the grade of tumor [3].

AQPs are a family of membrane, small, hydrophobic proteins that transfer water and small solutions e.g. glycerol. AQPs enhance cellular plasma membrane by 5–50 times in comparison to the membranes through which water primarily moves

¹ Dental Research Center, Dentistry Research Institute, Department of Oral Medicine, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran

through the lipid layer. Thirteen (0-12) AQPs in mammals are expressed by epithelium, endothelium, and other types of cell. AQPs are categorized into two groups: a subgroup including aquaporins 1-2-4-5-8 that are selective water channels and are water penetrable while rejecting small organic and inorganic molecules; and a subgroup including aquaporins 3-7-9-10 that are nonselective water channels, transferring glycerol and potentially other water solutions and water [5].

The first mammalian Aquaporin, Aquaporin 1 (AQP1) was found in erythrocytes and renal tubules and was initially named 'channel-forming integral membrane protein of 28 KDa (CHIP28).' Later, it was discovered that it physiologically covers Choroid network, corneal endothelium, C-fibres processing pain in Spinal cord, and all vascular endothelial cells except central nervous system. The primary function for AQP1 is carrying water. Other functions include nucleotide gated cation channel that is largely activated by cGMP and by cAMP indirectly. The expression of AQP1 has increased in some human cancers like those affecting bile duct, urinary bladder, Cervix, Colon, Nasopharynx, and Prostate [6].

Aquaporin 3 (AQP3) is conveyed within epithelial cells of digestive, respiratory, and urinary tracts as well as in kidneys, epidermis, eyes, brain, pancreas, and prostate. In such cellular types, high water permeability is accredited to physiological function in resorption or secretion. Expression of AQP3 is evident in some human carcinomas including scc, skin, lung adenocarcinoma, kidney carcinoma, and colorectal adenocarcinoma [7].

Aquaporin 5 (AQP5) is a member of the family of small hydrophobic proteins of androgen-regulated integral membrane water channel, regulating homeostasis of cellular water and growth signal. Over the past few decades, overexpression of AQP5 has been associated with several cancers (breast, ovarian, lung, colon, cervical, esophageal, etc) [8].

So far, no systematic review study has been performed for more accurate discovery of the relationship between AQP1, AQP3 as well as AQP5 and tumors. In this review paper, the aim is to investigate the function (expression) of AQPs 1, 3 and 5 in different tumors and their importance in the discovery and prognosis of cancer and their role as new therapeutic targets in biology of cancer.

Materials and Methods

To find the studies related to AQP1, AQP3 and AQP5 across different cancers, a search was performed in February 2019 in the following databases: Medline, scopus, embase, and Web of science. The utilized keywords were AQP1 and AQP3 and AQP5, cancer, neoplasms, carcinoma, and carcinogenesis. From among the papers found, 106 were related to the subject, which were further analyzed.

Result

Tables 1, 2 and 3.

Discussion

In this review study, all of the examined cancers in relation to AQP1 included adenoid cystic carcinoma, bladder, breast, cervical, colon, colorectal, hepatocellular, lung, ovarian, plural mesothelioma, prostate, renal cell carcinoma and squamous cell carcinoma. All of the studied cancers in relation with AQP3 included gastric, breast, prostate, lung, pancreas, skin, bladder, squamous cell carcinoma, cervical, adenoid cystic carcinoma, colon, colorectal, ovarian, and hepatocellular cancers. All of the examined cancers with regard to AQP5 were lung, squamous cell carcinoma, ovarian, adenoid cystic carcinoma, breast, colon, colorectal, hepatic, pancreas, gallbladder, prostate, and gastric cancers.

Table 4 indicates over or under expression of AQP1, AQP3 and AQP5 in the mentioned cancers across different studies.

According to the investigations and the results obtained from the papers, AQP1 increase was associated with worse Prognosis, reduced overall survival, Histologic grade, tumor size, TNM stage, metastasis of lymph nodes, relapse, Distant Metastasis, proliferation, invasion, and transformation of cancer cells, Tumor progression, advanced or metastatic cancer, deeper infiltration, Tumor growth, vascular and Lymphaticvascular and micro-vascular invasion, invasive phenotype of tumor, shorter DFS, longer overall survival, delayed relapse and death in malignant plural mesothelioma, smaller and lowgrade tumors, and lack of micro-vascular invasion in clear-cell RCC. In addition, limited expression of AQP1 was associated with shortened cell life, increased cellular Apoptosis in j82 cells in urinary bladder, decreased progression rate in colorectal cancer, poorer prognosis in clear cell carcinoma, reduced cell migration and invasion, reduced sphere formation, faster relapse, and prognosis in malignant plural mesothelioma [9, 10, 12, 15, 18, 19, 21, 22, 26, 27, 29, 30, 33, 42].

Overexpression of AQP3 was associated with progression of cancer, intensity of metaplasia, strengthening the cellular migration and aggression in cancer cells, poorer prognosis, improved progression free survival (PFS) and cancer specific survival (CSS), elevated self-renewal, metastasis of lymph nodes and remote areas. On the other hand, its under expression was related to impaired proliferation of cancer cells, delayed growth and aggression and migration of cancer cells, worse PFS, and less aggressive characteristics [18, 44, 45, 51, 64, 70, 71, 75, 76].

Overexpression of AQP5 was associated with lymph node metastasis, reduced survival rate, prognosis, facilitated cellular migration, lower disease-free survival, and induction of mucin production. Furthermore, it was also associated with

pe

Cancer type	Methods	Result			
Adenoid Cystic Carcinoma	Quantitative Methylation-Specific	AQP1 expression increase/ AQP1 methylation associated with im-			
Bladder cancer	PCR, Quantitative RT-PCR [9] RT-qPCR, Western blot [10]	proved prognosis Combination of AQP-1 inhibition with MMC treatment could be a			
Pancreatic ductal adenocarcinoma	IHC, Western blot [11]	Promising treatment Positive AQP1 expressions associated with the tumorigenesis and progression of PDAC			
Breast cancer	 qRT-PCR, IHC, Western blot [12] HC, PCR, Western blot, Immunofluorescence [13] IHC [14] 	 miR-320 downregulation enhance AQP1 expression, favoring tumor progression cytoplasmic expression of AQP1 promoted tumor progression 			
Cervical Carcinoma	Real-time PCR,	3. AQP1 and HIF1 interacted each other in oncogenesis AQP1 expression increase in advanced stage, deeper infiltration,			
Colon cancer	Immunofluorescence, IHC [15] 1.Quantitative PCR, Western blot, IHC, Immunofluorescence [16] 2.RT-PCR, Immunoblot, Immunofluorescence [17] 3.IHC [18] 4.IHC [19]	 metastatic lymph nodes and larger tumor volume 1.Treatment with AqB013 reduced migration and invasion of colon cancer cells 2. AQP1 has a role in colon cancer migration and expressed in HT20 cells 3.AQP1 overexpression correlate with lymph node metastasis 4. AQP1 supression as an independent page propagation forter 			
Colorectal cancer	IHC [20]	4.AQP1 expression as an independent poor prognostic factor Expression of AQP1 as a biomarker predictive of response to adjuvant			
Hepatocellular carcinoma	IHC [21]	chemotherapy High AQP1 expression and IMD associate with tumor progression			
Lung adenocarcinoma	IHC [22]	AQP1 overexpression results in a shorter			
Lung Cancer	1.RT-PCR, Western Blot, IHC [23] 2.RT-PCR, Western Blot [24]	 1.AQP1 Overexpressed in adenocarcinoma and bronchoalveolar carcinoma 2.Cetuximab and afatinib inhibited the growth and migration of cells and downgrowthet d the AOPI compression 			
Ovarian cancer	1.Semi-quantitative IHC [25] 2.IHC [26] 3.IHC, RT-qPCR, Western blot [27]	 and downregulated the AQP1 expression 1.AQP1 have not a significant association with important clinicopathological variables in serous EOC 2.High AQP1 expression was associated with worse OS in MC and EC 2. Description of AQP1 is biblicated with worse of immediated in the second s			
Malignant pleuralmesothelioma	1.IHC [28] 2Reverse transcriptase-PCR, Western blot [29]	3.Downregulation of AQP1 inhibited cell migration and invasion 1.AQP1 overexpression was associated with an increased median OS 2.AQP1 inhibition lowered cell adhesion 3.Expression of AQP1 correlated with prognosis in MM, irrespective of transmission.			
prostate cancer	1.Western blot, Real-time PCR [31] 2.Immunofluorescence, Flow cytometry [32]	1.Ginsenoside Rg3 inhibited expression of AQP1 and cell migration 2.AQP1 could be induced by hypoxia at transcription level, and regulation of AQP1 in PC-3 M cells is dependent on calcium, PKC and p38 MAPK and low ovvgen tension			
Renal cell carcinoma	 Real-time quantitative PCR [33] Western blot [34] Western blot [35] Western blot [36] Elisa [37] Western blot [38] Western blot [39] 	 and poor MATR and two oxygen tension 1.AQP1 shows RCC subtype-specific expression, and its expression level associate with prognosis 2.Urinary AQP1 able to identify patients with kidney cancer 3.AQP1 increase in patients with clear cell and papillary renal cell carcinoma 4.Urine AQP1 had specificity and sensitivity for RCC 5.Urine AQP1 had specificity and sensitivity for RCC 6.AQP1 in fresh urine is useful as a diagnostic tool for detecting RCC 7.Under-expression of AQP1 RCC tissue compared to adiagent normal control 			
Squamous cell carcinoma	1.IHC [40]	1.AQP1 is a marker of a subgroup of aggressive basaloid-like SCC			
Melanoma	2.IRC [41] 1.IHC [42] 2.IHC [43]	 2. Expression of AQP1 is related to a poor prognosis 1. BRAF V600 mutations significantly associate with AQP1 expression 2. AQP1 expression could be a prognostic marker of brain metastatic potential of melanoma 			

AQP1 aquaporin 1, IHC immunohistochemistry, MMC mitomycin c, PDAC pancreatic ductal adenocarcinoma, HIF hypoxia inducible factor, IMD intratumoral microvessel density, HCC hepatocellular carcinoma, EOC epithelial ovarian cancer, OS overall survival, MC mucinous carcinoma, EC endometrioid carcinoma, MM malignant mesothelioma, Rg3 ginsenoside Rg3, MAPK mitogen activated protein kinase, PKC protein kinase c, RCC renal cell carcinoma, SCC squamous cell carcinoma

Cancer type	Methods	Result			
Gastric cancer	 I.HC,RT-qPCR, Western blot, Immunofluorescence [44] I.HC,RT-qPCR, Western blot, Immunofluorescence [45] I.HC [46] I.HC [47] I.HC, Western blot, Reverse transcriptase PCR [48] 6.Real-time PCR, Western blot [49] 7.IHC, Western blot, RT-qPCR [50] 8.Western blot, Real-time PCR [51] 9.qRT-PCR, miRNA RT-PCR, Western blot, [52] 10.Western blot, RT-qPCR [53] 	 AQP3 promoted stem-like properties of human GC cells Upregulation of AQP3 associate with EMT-related proteins which correlated with poor prognosis for GC AQP3 provide a strategy for screening at-risk candidates with GIM AQP3 play an important role in gastric carcinogenesis from GIM C-Met expression in GC tissues was associated with AQP3 expression AQP3 regulate MMPs proteins expression AQP3 regulate MMPs proteins expression AQP3 inhibition induce migration and proliferation of GC cells via AQP3 AQP3 inhibition induce glycerol absent and impaired lipid generation in cancer cells AQP3 involve in the regulation of cell proliferation, migration and invasion by miR-874 HG promote migration and proliferation 			
Breast cancer	 I.IHC [54] Western blot [55] I.IHC [56] I.Immunofluorescence, Immunoblot, RT-PCR [57] S.RT-qPCR, Western blot [58] 	 AQP3 over-expression associate with worse prognosis for HER2-over-expressing EBC AQP3 require for FGF-2-induced cell migration Upregulation of AQP3 result in cell migration and invasion in ER-positive breast cancer cells Overexpressing AQP3 increase H2O2 uptake and cell migration upon CXCL12 stimulation Silencing AOP3 mRNA cause a reduction in cellular migration 			
Prostate cancer	 HC, Western blot [59] RT-qPCR, Western blot [60] Western blot, Reverse transcriptase-qPCR [61] RT-PCR, Immunocytochemistry, IHC [62] 	 AQP3 expresse in the epithelial area of the prostate in prostatic hyperplasia and cytoplasm of the epithelial cells in prostate cancer Inhibition of AQP3 increase the sensitivity of prostate cancer cells to freezing AQP3 upregulate the expression and secretion of MMP-3 via the ERK pathway AQP3 mRNA expresse in normal and cancerous epithelia of human prostate tissues 			
Lung cancer	1.qRT-PCR, Western blot [63] 2.qRT-PCR [64]	 Inhibition of AQP3 retarded the growth and invasiveness of XWLC-05 lung cancer cells AQP3 knockdown retarded the growth of NSCLC cells 			
Pancreatic cancer	1.IHC [65] 2.IHC,Western blot [11] 3.Western blot [66] 4.Western blot [67]	 AQP3 involve in PDA development Positive AQP3 expressions associate with the tumorigenesis and progression of PDAC AQP3 promote tumor growth of pancreatic cancer cells by activating Mtor signaling pathway Expression of AQP3 up-regulate by EGF in MPC-83 pancreatic cancer cells 			
Nonmelanoma skin cancer	1.IHC [68] 2.IHC [69]	 AQP3 have a role in the differentiation of tumors more than proliferation AQP3 play a role in NMSC pathogenesis 			
Urothelial bladder cancer	IHC [70]	Loss of AQP3 expression play a key role in disease progression and was associated with worse PFS			
Muscle-invasive bladder cancer	IHC [71]	High expression of AQP3 was associated with a significant improved PFS and CSS			
Squamous cell carcinoma	1.IHC [72] 2.RT-PCR, Western blot [73] 3IHC, Western blot [74]	 AQP3 play an important role in cell growth Reduced AQP3 in hypoxic conditions indicated less aggressive OSCC properties Inhibition of AQP3 function via the use of specific siRNA implied a novel role in the treatment of SCC 			

 Table 2
 Methods and result of aquaporin 3 expression in different cancer type

Table 2 (continued)

Cancer type	Methods	Result			
Adenoid cystic carcinoma	IHC [72]	There is no reports on the expression of AQP3 on malignant salivary gland tumors			
Cervical carcinoma	1.Real-time PCR, Immunofluorescent, IHC [75]	1.AQP3 participate in the initiation and progression of cervical carcinoma			
	2.Real-time PCR, Immunofluorescent, IHC [15]	2.AQP3 expression increased in advanced stage, deeper infiltration, metastatic lymph nodes and larger tumor volume			
Colorectal carcinoma	IHC, Western blot [76]	AQP3 overexpression facilitate colorectal carcinoma cell migration			
Colon cancer	IHC [18]	A significant correlation was found between AQP3 expression and lymph node metastasis			
Ovarian cancer	1.RT-PCR [77] 2.Western blot [78]	 AQPs associate with chemotherapy sensitivity of ovarian cancer Curcumin inhibited EGF-induced upregulation of AQP3 and cell migration 			
Hepatocellular carcinoma1.IHC, Western blot, RT-PCR [79]2.IHC, Western blot, qRT-PCR [80]		 Auphen and dbcAMP inhibit HCC development and could be considered targets for HCC diagnosis and therapy AQP3 up regulate in HCC and promoted the proliferation and migration of HCC cells 			

AQP3 aquaporin 3, *IHC* immunohistochemistry, *GC* gastric carcinoma, *EMT* epithelial mesenchymal transition, *GIM* gastric intestinal metaplasia, *MMPs* matrix metalloproteinases, *HG* hyperglycemia, *EBC* early breast cancer, *FGF-2* fibroblast growth factor-2, *ER* estrogen receptor, *ERK* extracellular signal-regulated kinase, *PDA* pancreatic ductal adenocarcinoma, *EGF* epidermal growth factor, *NMSC* nonmelanoma skin cancer, *PFS* progression-free survival, *CSS* cancer specific survival, *HCC* hepatocellular carcinoma, *SCC* squamous cell carcinoma

the histologic type and TNM stage, depth of advanced aggression, and remote metastasis. Overexpression affected cellular growth of proliferating versions, and could be used as a useful biomarker for detecting the primary stages of the disease. On the other hand, under expression of AQP5 was related to inhibited adhesion and cellular growth, inhibited cellular proliferation and migration, and inhibited tumor metastasis, and had anticancer effects [18, 72, 83–85, 94, 97].

Aquaporin 5 can be a beneficial specific and sensitive barometer for primary PDA stages. On the other hand, it seems that AQP3 expression is associated with late and more aggressive disease stages [65].

The suggested mechanism in migration of tumor cells via AQP1 is inducing water flow across Plasma Membrane by AQP1 in response to Osmotic Gradient, and is possible by actin depolymerization and active insertion of actively dissolved materials in edges of migrating cells. Inserting water via AQP1 can add to hydrostatic pressure and consequently, to local development of Plasma Membrane and then actin repolymerization for fixing protrusion of plasma membrane. Up-regulation of Aquaporin 1 around astrocytoma where infiltration of tumor cells occurs is in response to low expression in necrotic center, indicating a relation between AQP1 and tumor Angiogenesis [6].

The fundamental process of involvement of aquaporin 3 and aquaporin 5 concerning cancer progression remain controversial. Aquaporin 5 is conveyed in apical membrane of tumor ductal cells, expediting water transfers via cellular membranes, required for the creation of lamelliopodium and in turn for cellular relocation and proliferation. Moreover, glycerol transfer via aquaporin 3 may be applied for biosynthesis of lipids and ATP creation, supporting procedures such as relocation and multiplication. Also, extracellular H2O2 absorption through aquaporin 3 or aquaporin 5 can modify intracellular signaling pathways [65].

The Importance of Cellular and Molecular Markers in the Diagnosis and Treatment of Cancers

It has well been demonstrated that the tumor development, expansion, aggression, and metastasis are dependent on the metabolism and microenvironment of tumor. AQPs play a significant role in balancing tissue water as a reaction towards osmotic gradients, which is a prerequisite to maintaining cellular function including malignant cells. Furthermore, aquaporins may enable tumor development, metastasis and local infiltration, through strengthening cellular relocation and angiogenesis in regard to chemotactic stimulus [3, 107].

AQPs may enhance cell-matrix attachment, which is important for the spread and cellular migration of tumor. Also, AQPs are associated with tumor multiplication through enabling glycerol uptake that is a requirement for cellular biosynthesis and thus cellular segregation. Thus, the expression of aquaporin may be useful for high metabolic turnover or

Cancer type	Methods	Result			
Lung cancer	 1.IHC, Western blot, Real-time RT-PCR [81] 2.IHC [82] 3.IHC [83] 4.IHC [84] 	 AQP5 expression up-regulate in invading lung cancer cell AQP5 expression associate with DFS in ADC of the lung and tumor grade of NSCLC AQP5 facilitate incidence, progression and metastasis of NSCL AQP5 associate with worse prognosis 			
Squamous cell carcinoma	 I.HC [85] IHC, Western blot, Real-time quantitative RT-PCR [86] IHC [40] IHC, Western blot [72] 	 High expression of AQP5 is an independent poor prognostic factor in ESCC patients AQP5 expression affect cell proliferation, survival and prognosis of ESCC patients AQP5 expression associate with the absence of Bcl-2 and p16 expression AQP5 play an important role in cell growth 			
Adenoid cystic carcinoma	IHC, Western blot [72]	Positive staining of AQP5 is observe in non-tumor area of ACC tissues			
Ovarian cancer	 HC, Western blot, RT-PCR [87] Western blot, RT-PCR [88] HC, Western blot [89] HC [26] HC, Western blot, RT-PCR [90] Western blot, RT-qPCR [91] 	 I.EGCG inhibit the proliferation and induce the apoptosis of ovarian cancer SKOV3 cells Proliferation inhibition of cisplatin is related with AQP5 expression Topotecan down-regulate the expression of AQP5 and NF-κB High AQP5 expression correlate with poorer prognosis in serous carcinoma Overexpression of AQP5 play an important role in tumorigenesis of epithelial ovarian tumors Effect of hyperosmotic stress on sensitivity to CDDP associat with AQP5 expression in ovarian tumors 			
Breast cancer	1.IHC, RT-PCR, Immunoblot [92] 2.IHC [93] 3.IHC [94] 4.IHC [95]	 1.AQP5 overexpression play a role in cell growth and metastasis 2. Rac1 is a potential downstream signaling partner of AQP5 in vivo 3.AQP5 expression is a prognostic marker in EBC 4.Expression of AQP5 is independent poor prognostic factor for OS and DFS 			
Lung adenocarcinoma	1.Western blot [96] 2IHC, Western blot, Real-time RT-PCR [97]	 NFAT5 play important role in proliferation and migration of lung adenocarcinoma cells Mucin production induced by AQP5 expression play important role in enhanced metastasis 			
Colorectal cancer	1.Western blot, RT-PCR [98] 2.Western blot, RT-PCR [99]	1.Multiple AQP expression is advantageous to tumorigenesis 2.CE serve as a promising drug for the treatment of CRC metastasis			
Colon cancer	 1.IHC [18] 2.Western blot, Quantitative real-time RT-PCR [100] 	 AQP5 overexpression correlate with lymph node metastasis AQP5-P38 MAPK pathway represent a potential drug target to improve drug resistance of CC cells 			
Hepatocellular carcinoma	 1.IHC [101] 2.Western blot, qRT-PCR [102] 3.Western blot, Immunofluorescent [103] 	 Aberrant expression of AQP5 relates to tumor progression and prognosis in HCC AQP5 down-regulation inhibite HCC metastasis and EMT via inactivation of the NF-κB signaling pathway Heat shock and AQP5 knockdown exert similar anticancer effects 			
Pancreatic ductal adenocarcinoma	IHC [65]	AQP5 involve in PDA development			
Prostate cancer	IHC [104]	AQP5 could be both overexpressed and lost in subgroups of prostate cancers and link to unfavorable outcome			
Gastric cancer	 I.HC, Western blot, Immunocytochemistry [105] IHC, Western blot, RT-PCR [106] 	 Upregulation of AQP5 involves in differentiation of gastric cancer cells AQP5 play an important role in the tumorigenesis and progression of GC 			

 Table 3
 Methods and result of aquaporin 5 expression in different cancer type

AQP5 aquaporin 5, IHC immunohistochemistry, ADC adenocarcinoma, NSCLC non-small cell lung cancer, ACC adenoid cystic carcinoma, CDDP cisplatin, EBC early breast cancer, OS overall survival, DFS disease free survival, CE cairicoside E, CRC colorectal cancer, CC colon cancer, MAPK mitogen-activated protein kinase, HCC hepatocellular carcinoma, EMT epithelial mesenchymal transition, GC gastric cancer, SQCC squamous cell carcinoma, EGCG epigallocatechin gallate

Table 4Over or underexpression of AQP1, AQP3 and

AQP5 in different cancers

Cancer type	Number of AQP1 articles with result of		Number of AQP3 articles with result of		Number of AQP5 articles with result of	
Gastric	↑Exp	_	↑Exp	10	↑Exp	2
	↓Exp	-	↓Exp	-	↓Exp	—
Breast	↑Exp	3	↑Exp	5	↑Exp	4
	↓Exp	-	↓Exp	-	↓Exp	—
Panceratic	↑Exp	1	↑Exp	4	↑Exp	1
	↓Exp	-	↓Exp	-	↓Exp	—
SCC	↑Exp	2	↑Exp	3	↑Exp	4
	↓Exp	-	↓Exp	-	↓Exp	-
Colon	↑Exp	4	↑Exp	1	↑Exp	2
	↓Exp	-	↓Exp	-	↓Exp	-
Colorectal	↑Exp	1	↑Exp	1	↑Exp	2
	↓Exp	-	↓Exp	-	↓Exp	-
Ovarian	↑Exp	3	↑Exp	2	↑Exp	3
	↓Exp	-	↓Exp	-	↓Exp	-
Hepatocellular	↑Exp	1	↑Exp	2	↑Exp	2
	↓Exp	-	↓Exp	-	↓Exp	-
Lung	↑Exp	2	↑Exp	-	↑Exp	6
	↓Exp	-	↓Exp	-	↓Exp	-
Prostate	↑Exp	1	↑Exp	4	-	-
	↓Exp	—	↓Exp	-	-	—
BCC	↑Exp	-	↑Exp	1	-	-
	↓Exp	-	↓Exp	-	-	-
Cervical	↑Exp	1	↑Exp	2	-	-
	↓Exp	-	↓Exp	-	-	_
Adenoid cystic carcinoma	↑Exp	1	-	-	-	-
	↓Exp	-	-	-	-	-
Plural mesothelioma	↑Exp	2	-	-	-	_
	↓Exp	-	-	-	-	-
Renal	↑Exp	6	-	_	-	-
	↓Exp	-	_	-	_	_
Melanoma	↑Exp	2	_	-	_	_
	↓Exp	_	_	_	_	-

special metabolic pathways of tumor required for malignant cells to survive [4].

It is possible to use miRNA as either tumor suppressors or as oncogenes in many forms of cancer through adjusting the suppression of translation or targeting the reduction of mRNA. miRNA expression has decreased in breast cancer, colon cancer and AML and inhibit Cell proliferation in prostate cancer. miR-320 expression is possibly correlated with survival without relapse in colon cancer [12]. Tumors with great AQP1 expressions displayed loss of E-cadherin and increased expression of vimentin, suggesting that AQP1 might play a role in tumor progression via epithelial mesenchymal transition [22].

Resistance to Apoptosis is considered as a part of background mechanism for proliferation of cells expressing AQP1. The potential downsream effectors along the signaling that contribute to tumor progression are TGF- β , FAK, β -catenin, RhoA, and Rac [26]. Any decrease in Aquaporin 1 with siRNA leads to increase in cell TE5, TE15, and ESCC except sub-phase G1. Moreover, ESCC cells free of AQP1 are induced towards Apoptosis, indicating that AQP1 can inhibit Apoptosis. AQP1 is often found in Cytoplasm of TE5 and TE15 cells although it can be found in membrane of Cell nucleus of KYSE70. Several molecules such as E-cadherin, β -catenin, ZO-1, ZO-2, and claudin-1 affect tumor progression due to their changed localization [41].

Overexpression of AQP5 is associated with increased proliferation of Ki67 cellular marker. Expression of AQP3 and AQP5 grows by EGFR signaling pathway (epidermal growth factor receptor). Overexpression of EGFR is commonly found in tumors such as pancreatic cancer, whose activation results in transcription of the genes contributing to the development and multiplication. The expression of EGFR is related to weak prognosis and enhanced aggression in PDA. Furthermore, aquaporin 3 and aquaporin 5 are also involved in epithelial mesenchymal transition (EMT) [45, 65], a procedure in malignant tumors participating in aggression and metastasis, through which the cells are deprived of their epithelial features, namely attachment to the cell and immobility, while obtaining migration mesenchymal characteristics. A large number of studies indicate that AQPs including aquaporin 1, aquaporin 3 and aquaporin 5 have been conveyed in various tumors, and can be used as a valuable biomarker in cancer diagnosis [65].

Blocking AQPs can inhibit angiogenesis as well as growth and metastasis of tumors. New therapeutic approaches may be developed by antagonizing their biological activity [108].

In the course of expression, the epithelial adhesion molecules expression e.g. E-cadherin (E-cad) diminish, while mesenchymal cellular markers such as vimentin grow.

Overexpression of AQP5 enhances pseudo-mesenchymal phototype as well as Epithelial mesenchymal transition (EMT) mechanism in SW480 and HCT-116 along with low metastasis of CRC and HT-29 cells. Conversely, when aquaporin 5 is off, it results in EMT inhibition in SW40 and HCT-29 cells. It is proven that aquaporin 5 is associated with cellular movement and aggression. There is also evidence suggesting that AQP5 can induce EMT process, thereby enhancing migration and aggression of CRC cell [92].

EMT is modulated by intracellular and extracellular signals. In particular, TGF-B is an extracellular cytokine which is a vital instigator of EMT, called cancer metastasis inducer. TGF-B1 enhances expression of AQP5 and activates ETM. Cairicoside E (CE) inhibits migration and aggression by inducing TGF-B1, and reverses up-regulation of aquaporin 5 and EMT. TGFB has been known as an EMT inducer through smads signaling. In the TGFB/smad signaling pathway, TGFB attaches to the cellular membrane autonomous receptor, TGFB R1/2, and induces signaling cascade via phosphorylating smad2/3. Phosphorylating smad2/3 creates a set with smad4, displaces from cytoplasm to the nucleus in order to control the transcription of the target gene which leads to EMT stimulation.

The up-regulation of AQP5 enhances p-smad2/3 expression, whilst deactivation of aquaporin 5 represses p-smad2/3 levels. It is suggested that AQP5 enhances EMT through activating smad2/3. Moreover, once aquaporin 5 is turned off, CE does not have a considerable impact on initiation of smad2/3 and EMT induced by TGFB1. AQP5 regulation in repressing EMT by CE depends on repressing p-smad2/3 [99].

Thus, according to the collected data, overexpression of AQP1, AQP3 and AQP5 is clearly associated with carcinogenesis, metastasis, reduced survival rate, lymph node metastasis, poorer prognosis, and cellular migration. In the studies conducted on the effect of cancer treatments in relation to these markers, all suggest AQP reduction during the treatment.

Conclusion

According to this review of about 106 papers, it can be concluded that definitely AQP1, AQP3 and AQP5 in different epithelial and mesenchymal tissues are associated with the course of carcinogenesis and aggravation of cancer prognosis.

Compliance with Ethical Standards

Conflicts of Interest There was no conflict of interest for this study.

References

- 1. Wang L, Zhang Y, Wu X, Yu G (2016) Aquaporins: new targets for cancer therapy. Technol Cancer Res Treat 15(6):821–828
- Verkman AS, Anderson MO, Papadopoulos MC (2014) Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 13(4):259–277
- Papadopoulos MC, Saadoun S (2015) Key roles of aquaporins in tumor biology. Biochim Biophys Acta Biomembr 1848(10): 2576–2583
- Direito I, Madeira A, Brito MA, Soveral G (2016) Aquaporin-5: from structure to function and dysfunction in cancer. Cell Mol Life Sci 73(8):1623–1640
- Takata K, Matsuzaki T, Tajika Y (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39(1):1–83
- Tomita Y, Dorward H, Yool A, Smith E, Townsend A, Price T, Hardingham J (2017) Role of aquaporin 1 signalling in cancer development and progression. Int J Mol Sci 18(2):299
- Niu D, Kondo T, Nakazawa T, Yamane T, Mochizuki K, Kawasaki T, Matsuzaki T, Takata K, Katoh R (2012) Expression of aquaporin3 in human neoplastic tissues. Histopathology. 61(4): 543–551
- Jensen HH, Login FH, Koffman JS, Kwon T-H, Nejsum LN (2016) The role of aquaporin-5 in cancer cell migration: a potential active participant. Int J Biochem Cell Biol 79:271–276
- Tan M, Shao C, Bishop JA, Feng Z, Trock BJ, Westra WH, Ha PK (2014) Aquaporin-1 promoter hypermethylation is associated with improved prognosis in salivary gland adenoid cystic carcinoma. Otolaryngol Head Neck Surg 150(5):801–807
- Zhang X, Chen Y, Dong L, Shi B (2018) Effect of selective inhibition of aquaporin 1 on chemotherapy sensitivity of J82 human bladder cancer cells. Oncol Lett 15(3):3864–3869
- Zou W, Yang Z, Li D, Liu Z, Zou Q, Yuan Y (2019) AQP1 and AQP3 expression are associated with severe symptoms and poorprognosis of the pancreatic ductal adenocarcinoma. Appl Immunohistochem Mol Morphol 27(1):40–47
- Luo L, Yang R, Zhao S, Chen Y, Hong S, Wang K, Wang T, Cheng J, Zhang T, Chen D (2018) Decreased miR-320 expression is associated with breast cancer progression, cell migration, and invasiveness via targeting aquaporin 1. Acta Biochim Biophys Sin 50(5):473–480
- Qin F, Zhang H, Shao Y, Liu X, Yang L, Huang Y et al (2016) Expression of aquaporin1, a water channel protein, in cytoplasm is

negatively correlated with prognosis of breast cancer patients. Oncotarget. 7(7):8143

- Yin T, Yu S, Xiao L, Zhang J, Liu C, Lu Y et al (2008) Correlation between the expression of aquaporin 1 and hypoxia-inducible factor 1 in breast cancer tissues. J Huazhong Univ Sci Technolog Med Sci 28(3):346
- Shi Y-H, Chen R, Talafu T, Nijiati R, Lalai S (2012) Significance and expression of aquaporin 1, 3, 8 in cervical carcinoma in Xinjiang Uygur women of China. Asian Pac J Cancer Prev 13(5):1971–1975
- Dorward HS, Du A, Bruhn MA, Wrin J, Pei JV, Evdokiou A et al (2016) Pharmacological blockade of aquaporin-1 water channel by AqB013 restricts migration and invasiveness of colon cancer cells and prevents endothelial tube formation in vitro. J Exp Clin Cancer Res 35(1):36
- Jiang Y (2009) Aquaporin-1 activity of plasma membrane affects HT20 colon cancer cell migration. IUBMB Life 61(10):1001– 1009
- Kang BW, Kim JG, Lee SJ, Chae YS, Jeong JY, Yoon GS, Park SY, Kim HJ, Park JS, Choi GS, Jeong JY (2015) Expression of aquaporin-1, aquaporin-3, and aquaporin-5 correlates with nodal metastasis in colon cancer. Oncology. 88(6):369–376
- Yoshida T, Hojo S, Sekine S, Sawada S, Okumura T, Nagata T et al (2013) Expression of aquaporin-1 is a poor prognostic factor for stage II and III colon cancer. Mol Clin Oncol 1(6):953–958
- Imaizumi H, Ishibashi K, Takenoshita S, Ishida H (2018) Aquaporin 1 expression is associated with response to adjuvant chemotherapy in stage II and III colorectal cancer. Oncol Lett 15(5):6450–6456
- Luo LM, Xia H, Shi R, Zeng J, Liu XR, Wei M (2017) The association between aquaporin-1 expression, microvessel density and the clinicopathological features of hepatocellular carcinoma. Oncol Lett 14(6):7077–7084
- Bellezza G, Vannucci J, Bianconi F, Metro G, Del Sordo R, Andolfi M et al (2017) Prognostic implication of aquaporin 1 overexpression in resected lung adenocarcinoma. Interact Cardiovasc Thorac Surg 25(6):856–861
- Hoque MO, Soria J-C, Woo J, Lee T, Lee J, Jang SJ, Upadhyay S, Trink B, Monitto C, Desmaze C, Mao L, Sidransky D, Moon C (2006) Aquaporin 1 is overexpressed in lung cancer and stimulates NIH-3T3 cell proliferation and anchorage-independent growth. Am J Pathol 168(4):1345–1353
- Liu Y, Zhu W (2015) Effects of cetuximab combined with afatinib on the expression of KDR and AQP1 in lung cancer. Genet Mol Res 14(4):16652–16661
- Takal MK, Baykal C, Başer E, Kaya MD, Dursun P, Özen Ö et al (2013) Does Aquaporin-1 expression have clinical significance in serous epithelial ovarian cancer? J Turk Ger Gynecol Assoc 14(3): 130–135
- 26. Sato K, Miyamoto M, Takano M, Furuya K, Tsuda H (2018) Different prognostic implications of Aquaporin-1 and Aquaporin-5 expression among different histological types of ovarian carcinoma. Pathol Oncol Res:1–9
- Wang Y, Fan Y, Zheng C, Zhang X (2017) Knockdown of AQP1 inhibits growth and invasion of human ovarian cancer cells. Mol Med Rep 16(4):5499–5504
- Angelico G, Caltabiano R, Loreto C, Ieni A, Tuccari G, Ledda C, Rapisarda V (2018) Immunohistochemical expression of Aquaporin-1 in Fluoro-Edenite-induced malignant mesothelioma: a preliminary report. Int J Mol Sci 19(3):685
- 29. Jagirdar RM, Apostolidou E, Molyvdas PA, Gourgoulianis KI, Hatzoglou C, Zarogiannis SG (2016) Influence of AQP1 on cell adhesion, migration, and tumor sphere formation in malignant pleural mesothelioma is substratum-and histological-type dependent. Am J Phys Lung Cell Mol Phys 310(6):L489–LL95

- Kao SCH, Armstrong N, Condon B, Griggs K, McCaughan B, Maltby S, Wilson A, Henderson DW, Klebe S (2012) Aquaporin 1 is an independent prognostic factor in pleural malignant mesothelioma. Cancer. 118(11):2952–2961
- Pan X-Y, Guo H, Han J, Hao F, An Y, Xu Y, Xiaokaiti Y, Pan Y, Li XJ (2012) Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells. Eur J Pharmacol 683(1–3):27–34
- Tie L, Lu N, Pan X-Y, Pan Y, An Y, Gao J-W, Lin YH, Yu HM, Li XJ (2012) Hypoxia-induced up-regulation of aquaporin-1 protein in prostate cancer cells in a p38-dependent manner. Cell Physiol Biochem 29(1–2):269–280
- Huang Y, Murakami T, Sano F, Kondo K, Nakaigawa N, Kishida T, Kubota Y, Nagashima Y, Yao M (2009) Expression of aquaporin 1 in primary renal tumors: a prognostic indicator for clear-cell renal cell carcinoma. Eur Urol 56(4):690–699
- Morrissey JJ, Kharasch ED (2013) The specificity of urinary aquaporin 1 and perilipin 2 to screen for renal cell carcinoma. J Urol 189(5):1913–1920
- 35. Morrissey JJ, Mobley J, Song J, Vetter J, Luo J, Bhayani S et al (2014) Urinary concentrations of aquaporin-1 and perilipin-2 in patients with renal cell carcinoma correlate with tumor size and stage but not grade. Urology 83(1):256. e9–256. e14
- 36. Morrissey JJ, Mobley J, Figenshau RS, Vetter J, Bhayani S, Kharasch ED, eds (2015) Urine aquaporin 1 and perilipin 2 differentiate renal carcinomas from other imaged renal masses and bladder and prostate cancer. Mayo Clinic Proceedings. Elsevier
- Morrissey JJ, Mellnick VM, Luo J, Siegel MJ, Figenshau RS, Bhayani S, Kharasch ED (2015) Evaluation of urine aquaporin-1 and perilipin-2 concentrations as biomarkers to screen for renal cell carcinoma: a prospective cohort study. JAMA Oncol 1(2): 204–212
- Sreedharan S, Petros JA, Master VA, Ogan K, Pattaras JG, Roberts DL, Lian F, Arnold RS (2014) Aquaporin-1 protein levels elevated in fresh urine of renal cell carcinoma patients: potential use for screening and classification of incidental renal lesions. Dis Markers 2014:1–6
- Ticozzi-Valerio D, Raimondo F, Pitto M, Rocco F, Bosari S, Perego R, Sarto C, di Fonzo A, Bosso N, Mocarelli P, Galli-Kienle M, Magni F (2007) Differential expression of AQP1 in microdomain-enriched membranes of renal cell carcinoma. Proteomics Clin Appl 1(6):588–597
- Lehnerdt G, Bachmann H, Adamzik M, Panic A, Köksal E, Weller P et al (2015) AQP1, AQP5, Bcl-2 and p16 in pharyngeal squamous cell carcinoma. J Laryngol Otol 129(6):580–586
- Yamazato Y, Shiozaki A, Ichikawa D, Kosuga T, Shoda K, Arita T et al (2018) Aquaporin 1 suppresses apoptosis and affects prognosis in esophageal squamous cell carcinoma. Oncotarget. 9(52): 29957
- 42. Imrédi E, Tóth B, Doma V, Barbai T, Rásó E, Kenessey I, Tímár J (2016) Aquaporin 1 protein expression is associated with BRAF V600 mutation and adverse prognosis in cutaneous melanoma. Melanoma Res 26(3):254–260
- 43. Imrédi E, Liszkay G, Kenessey I, Plotár V, Gödény M, Tóth B et al (2018) Aquaporin-1 protein expression of the primary tumor may predict cerebral progression of cutaneous melanoma. Pathol Oncol Res:1–6
- Zhou Y, Wang Y, Wen J, Zhao H, Dong X, Zhang Z et al (2016) Aquaporin 3 promotes the stem-like properties of gastric cancer cells via Wnt/GSK-3β/β-catenin pathway. Oncotarget. 7(13):16529
- 45. Chen J, Wang T, Zhou Y-C, Gao F, Zhang Z-H, Xu H, Wang SL, Shen LZ (2014) Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer. J Exp Clin Cancer Res 33(1):38

- 46. Zhao H, Wen J, Dong X, He R, Gao C, Zhang W et al (2017) Identification of AQP3 and CD24 as biomarkers for carcinogenesis of gastric intestinal metaplasia. Oncotarget. 8(38):63382
- Zhao H, Yang X, Zhou Y, Zhang W, Wang Y, Wen J et al (2015) Potential role of aquaporin 3 in gastric intestinal metaplasia. Oncotarget. 6(36):38926
- Wang J, Gui Z, Deng L, Sun M, Guo R, Zhang W, Shen L (2012) C-met upregulates aquaporin 3 expression in human gastric carcinoma cells via the ERK signalling pathway. Cancer Lett 319(1): 109–117
- Xu H, Xu Y, Zhang W, Shen L, Yang L, Xu Z (2011) Aquaporin-3 positively regulates matrix metalloproteinases via PI3K/AKT signal pathway in human gastric carcinoma SGC7901 cells. J Exp Clin Cancer Res 30(1):86
- Wang G, Gao F, Zhang W, Chen J, Wang T, Zhang G, Shen L (2012) Involvement of aquaporin 3 in helicobacter pylori-related gastric diseases. PLoS One 7(11):e49104
- Li Z, Li B, Zhang L, Chen L, Sun G, Zhang Q, Wang J, Zhi X, Wang L, Xu Z, Xu H (2016) The proliferation impairment induced by AQP3 deficiency is the result of glycerol uptake and metabolism inhibition in gastric cancer cells. Tumor Biol 37(7):9169– 9179
- 52. Jiang B, Li Z, Zhang W, Wang H, Zhi X, Feng J, Chen Z, Zhu Y, Yang L, Xu H, Xu Z (2014) miR-874 inhibits cell proliferation, migration and invasion through targeting aquaporin-3 in gastric cancer. J Gastroenterol 49(6):1011–1025
- Zhou Y, Wang Y, Wang S, Shen L (2015) Hyperglycemia promotes human gastric carcinoma progression via aquaporin 3. Dig Dis Sci 60(8):2338–2345
- 54. Kang S, Chae YS, Lee SJ, Kang BW, Kim JG, Kim WW et al (2015) Aquaporin 3 expression predicts survival in patients with HER2-positive early breast cancer. Anticancer Res 35(5):2775–2782
- 55. Cao X-C, Zhang W-R, Cao W-F, Liu B-W, Zhang F, Zhao H-M, Meng R, Zhang L, Niu RF, Hao XS, Zhang B (2013) Aquaporin3 is required for FGF-2-induced migration of human breast cancers. PLoS One 8(2):e56735
- 56. Huang Y-T, Zhou J, Shi S, Xu H-Y, Qu F, Zhang D, Chen YD, Yang J, Huang HF, Sheng JZ (2015) Identification of estrogen response element in aquaporin-3 gene that mediates estrogeninduced cell migration and invasion in estrogen receptor-positive breast cancer. Sci Rep 5:12484
- Satooka H, Hara-Chikuma M (2016) Aquaporin-3 controls breast cancer cell migration by regulating hydrogen peroxide transport and its downstream cell signaling. Molecular and cellular biology. MCB. 00971–15
- Arif M, Kitchen P, Conner MT, Hill EJ, Nagel D, Bill RM et al (2018) Downregulation of aquaporin 3 inhibits cellular proliferation, migration and invasion in the MDA-MB-231 breast cancer cell line. Oncol Lett 16(1):713–720
- Hwang I, Jung S-I, Hwang E-C, Song SH, Lee H-S, Kim S-O, Kang TW, Kwon D, Park K (2012) Expression and localization of aquaporins in benign prostate hyperplasia and prostate cancer. Chonnam Med J 48(3):174–178
- Ismail M, Bokaee S, Davies J, Harrington K, Pandha H (2009) Inhibition of the aquaporin 3 water channel increases the sensitivity of prostate cancer cells to cryotherapy. Br J Cancer 100(12):1889–1895
- Chen J, Wang Z, Xu D, Liu Y, Gao Y (2015) Aquaporin 3 promotes prostate cancer cell motility and invasion via extracellular signal-regulated kinase 1/2-mediated matrix metalloproteinase-3 secretion. Mol Med Rep 11(4):2882–2888
- Wang J, Tanji N, Kikugawa T, Shudou M, Song X, Yokoyama M (2007) Expression of aquaporin 3 in the human prostate. Int J Urol 14(12):1088–1092

- Xiong G, Chen X, Zhang Q, Fang Y, Chen W, Li C, Zhang J (2017) RNA interference influenced the proliferation and invasion of XWLC-05 lung cancer cells through inhibiting aquaporin 3. Biochem Biophys Res Commun 485(3):627–634
- Hou S-Y, Li Y-P, Wang J-H, Yang S-L, Wang Y, Wang Y, Kuang Y (2016) Aquaporin-3 inhibition reduces the growth of NSCLC cells induced by hypoxia. Cell Physiol Biochem 38(1):129–140
- Direito I, Paulino J, Vigia E, Brito MA, Soveral G (2017) Differential expression of aquaporin-3 and aquaporin-5 in pancreatic ductal adenocarcinoma. J Surg Oncol 115(8):980–996
- Huang X, Huang L, Shao M (2017) Aquaporin 3 facilitates tumor growth in pancreatic cancer by modulating mTOR signaling. Biochem Biophys Res Commun 486(4):1097–1102
- Liu W, Wang K, Gong K, Li X, Luo K (2012) Epidermal growth factor enhances MPC-83 pancreatic cancer cell migration through the upregulation of aquaporin 3. Mol Med Rep 6(3):607–610
- Ramadan WM, Gheida SF, El-Ashmawy AA, Shareef MM (2017) Aquaporin-3 expression in common hyperproliferative skin disorders: an immunohistochemical study. J Egypt Women Dermatol Soc 14(2):128–136
- Seleit I, Bakry OA, Sharaky DA, Ragheb E (2015) Evaluation of aquaporin-3 role in nonmelanoma skin cancer: an immunohistochemical study. Ultrastruct Pathol 39(5):306–317
- Otto W, Rubenwolf PC, Burger M, Fritsche H-M, Rößler W, May M, Hartmann A, Hofstädter F, Wieland WF, Denzinger S (2012) Loss of aquaporin 3 protein expression constitutes an independent prognostic factor for progression-free survival: an immunohistochemical study on stage pT1 urothelial bladder cancer. BMC Cancer 12(1):459
- Rubenwolf P, Thomas C, Denzinger S, Hartmann A, Burger M, Georgopoulos NT, Otto W (2015) Loss of AQP3 protein expression is associated with worse progression-free and cancer-specific survival in patients with muscle-invasive bladder cancer. World J Urol 33(12):1959–1964
- Ishimoto S, Wada K, Usami Y, Tanaka N, Aikawa T, Okura M et al (2012) Differential expression of aquaporin 5 and aquaporin 3 in squamous cell carcinoma and adenoid cystic carcinoma. Int J Oncol 41(1):67–75
- Søland TM, Ulekleiv CH, Galtung HK (2015) Hypoxia influence aquaporin 3 (AQP3) and migration in oral squamous cell carcinoma (OSCC). Oral Surg Oral Med Oral Pathol Oral Radiol 119(3):e181
- 74. Kusayama M, Wada K, Nagata M, Ishimoto S, Takahashi H, Yoneda M, Nakajima A, Okura M, Kogo M, Kamisaki Y (2011) Critical role of aquaporin 3 on growth of human esophageal and oral squamous cell carcinoma. Cancer Sci 102(6):1128–1136
- 75. Chen R, Shi Y, Amiduo R, Tuokan T, Suzuk L (2014) Expression and prognostic value of aquaporin 1, 3 in cervical carcinoma in women of Uygur ethnicity from Xinjiang, China. PloS One 9(6):e98576
- Li A, Lu D, Zhang Y, Li J, Fang Y, Li F et al (2013) Critical role of aquaporin-3 in epidermal growth factor-induced migration of colorectal carcinoma cells and its clinical significance. Oncol Rep 29(2):535–540
- Xuejun C, Weimin C, Xiaoyan D, Wei Z, Qiong Z, Jianhua Y (2014) Effects of aquaporins on chemosensitivity to cisplatin in ovarian cancer cells. Arch Gynecol Obstet 290(3):525–532
- Ji C, Cao C, Lu S, Kivlin R, Amaral A, Kouttab N, Yang H, Chu W, Bi Z, di W, Wan Y (2008) Curcumin attenuates EGF-induced AQP3 up-regulation and cell migration in human ovarian cancer cells. Cancer Chemother Pharmacol 62(5):857–865
- 79. Peng R, Zhang Y, Zhao G, Li J, Shen X, Wang J, Sun JY (2016) Differential regulation of the expression of aquaporins 3 and 9 by Auphen and dbcAMP in the SMMC-7721 hepatocellular carcinoma cell line. Biotech Histochem 91(5):333–341
- Chen G, Shi Y, Liu M, Sun J (2018) circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating

AQP3 expression in hepatocellular carcinoma. Cell Death Dis 9(2):175

- Machida Y, Ueda Y, Shimasaki M, Sato K, Sagawa M, Katsuda S, Sakuma T (2011) Relationship of aquaporin 1, 3, and 5 expression in lung cancer cells to cellular differentiation, invasive growth, and metastasis potential. Hum Pathol 42(5):669–678
- Jo YM, Park TI, Lee HY, Jeong JY, Lee WK (2016) Prognostic significance of aquaporin 5 expression in non-small cell lung cancer. J Pathol Transl Med 50(2):122–128
- Song T, Yang H, Ho JCM, Tang SCW, Sze SCW, Lao L et al (2015) Expression of aquaporin 5 in primary carcinoma and lymph node metastatic carcinoma of non-small cell lung cancer. Oncol Lett 9(6):2799–2804
- 84. Chae YK, Woo J, Kim M-J, Kang SK, Kim MS, Lee J, Lee SK, Gong G, Kim YH, Soria JC, Jang SJ, Sidransky D, Moon C (2008) Expression of aquaporin 5 (AQP5) promotes tumor invasion in human non small cell lung cancer. PLoS One 3(5):e2162
- Liu S, Zhang S, Jiang H, Yang Y, Jiang Y (2013) Co-expression of AQP3 and AQP5 in esophageal squamous cell carcinoma correlates with aggressive tumor progression and poor prognosis. Med Oncol 30(3):636
- Shimizu H, Shiozaki A, Ichikawa D, Fujiwara H, Konishi H, Ishii H, Komatsu S, Kubota T, Okamoto K, Kishimoto M, Otsuji E (2014) The expression and role of aquaporin 5 in esophageal squamous cell carcinoma. J Gastroenterol 49(4):655–666
- Yan C, Yang J, Shen L, Chen X (2012) Inhibitory effect of epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression. Arch Gynecol Obstet 285(2):459–467
- Yang J, Yan C, Zheng W, Chen X (2012) Proliferation inhibition of cisplatin and aquaporin 5 expression in human ovarian cancer cell CAOV3. Arch Gynecol Obstet 285(1):239–245
- Chen X, Yang J, Zheng W (2009) Effect of topotecan on expression of aquaporin protein 5 and nuclear factorB! B in ovarian cancer SKOV3 cells. Chi J Cancer 28(8)
- Yang J-H, Shi Y-F, Cheng Q, Deng L (2006) Expression and localization of aquaporin-5 in the epithelial ovarian tumors. Gynecol Oncol 100(2):294–299
- Yan C, Zhu Y, Zhang X, Chen X, Zheng W, Yang J (2014) Downregulated aquaporin 5 inhibits proliferation and migration of human epithelial ovarian cancer 3AO cells. J Ovarian Res 7(1):78
- 92. Jung HJ, Park J-Y, Jeon H-S, Kwon T-H (2011) Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS One 6(12):e28492
- Jensen HH, Login FH, Park J-Y, Kwon T-H, Nejsum LN (2017) Immunohistochemical evalulation of activated Ras and Rac1 as potential downstream effectors of aquaporin-5 in breast cancer in vivo. Biochem Biophys Res Commun 493(3):1210–1216
- Lee SJ, Chae YS, Kim JG, Kim WW, Jung JH, Park HY, Jeong JY, Park JY, Jung HJ, Kwon TH (2014) AQP5 expression predicts survival in patients with early breast cancer. Ann Surg Oncol 21(2):375–383
- Zhu Z, Jiao L, Li T, Wang H, Wei W, Qian H (2018) Expression of AQP3 and AQP5 as a prognostic marker in triple-negative breast cancer. Oncol Lett 16(2):2661–2667

- Guo K, Jin F (2015) NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression. Biochem Biophys Res Commun 465(3):644–649
- Zhang Z-Q, Zhu Z-X, Bai C-X, Chen Z-H (2011) Aquaporin 5 expression increases mucin production in lung adenocarcinoma. Oncol Rep 25(6):1645–1650
- Moon C, Soria J-C, Jang SJ, Lee J, Hoque MO, Sibony M, Trink B, Chang YS, Sidransky D, Mao L (2003) Involvement of aquaporins in colorectal carcinogenesis. Oncogene. 22(43):6699–6703
- 99. Chen C, Ma T, Zhang C, Zhang H, Bai L, Kong L, Luo J (2017) Down-regulation of aquaporin 5-mediated epithelialmesenchymal transition and anti-metastatic effect by natural product Cairicoside E in colorectal cancer. Mol Carcinog 56(12):2692–2705
- Shi X, Wu S, Yang Y, Tang L, Wang Y, Dong J, Lü B, Jiang G, Zhao W (2014) AQP5 silencing suppresses p38 MAPK signaling and improves drug resistance in colon cancer cells. Tumor Biol 35(7):7035–7045
- 101. Guo X, Sun T, Yang M, Li Z, Li Z, Gao Y (2013) Prognostic value of combined aquaporin 3 and aquaporin 5 overexpression in hepatocellular carcinoma. Biomed Res Int 2013:1–7
- He Z, Dong W, Hu J, Ren X (2017) AQP5 promotes hepatocellular carcinoma metastasis via NF-κB-regulated epithelialmesenchymal transition. Biochem Biophys Res Commun 490(2):343–348
- 103. Kudou M, Shiozaki A, Kosuga T, Shimizu H, Ichikawa D, Konishi H, Morimura R, Komatsu S, Ikoma H, Fujiwara H, Okamoto K, Marunaka Y, Otsuji E (2017) Heat shock exerts anticancer effects on liver cancer via autophagic degradation of aquaporin 5. Int J Oncol 50(5):1857–1867
- 104. Pust A, Kylies D, Hube-Magg C, Kluth M, Minner S, Koop C, Grob T, Graefen M, Salomon G, Tsourlakis MC, Izbicki J, Wittmer C, Huland H, Simon R, Wilczak W, Sauter G, Steurer S, Krech T, Schlomm T, Melling N (2016) Aquaporin 5 expression is frequent in prostate cancer and shows a dichotomous correlation with tumor phenotype and PSA recurrence. Hum Pathol 48:102–110
- 105. Watanabe T, Fujii T, Oya T, Horikawa N, Tabuchi Y, Takahashi Y, Morii M, Takeguchi N, Tsukada K, Sakai H (2009) Involvement of aquaporin-5 in differentiation of human gastric cancer cells. J Physiol Sci 59(2):113–122
- Huang Y-H, Zhou X-Y, Wang H-M, Xu H, Chen J, Lv N-H (2013) Aquaporin 5 promotes the proliferation and migration of human gastric carcinoma cells. Tumor Biol 34(3):1743–1751
- Verkman A (2009) Aquaporins: translating bench research to human disease. J Exp Biol 212(11):1707–1715
- Nico B, Ribatti D (2010) Aquaporins in tumor growth and angiogenesis. Cancer Lett 294(2):135–138

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.