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Abstract
Long noncoding RNAs (lncRNAs) have recently considered as central regulators in diverse biological processes and emerged as
vital players controlling tumorigenesis. Several lncRNAs can be classified into oncogenes and tumor suppressor genes depending
on their function in cancer. A maternally expressed gene 3 (MEG3) gene transcripts a 1.6 kb lncRNA whose act as an
antitumor component in different cancer cells, such as breast, liver, glioma, colorectal, cervical, gastric, lung, ovarian and
osteosarcoma cancer cells. The present review highlights biological function of MEG3 to repress tumor through regulating the
major tumor suppressor genes p53 and Rb, inhibiting angiogenesis-related factor, or controlling miRNAs. On the other hand,
previous studies have also suggested that MEG3 mediates epithelial-mesenchymal transition (EMT). However, deregulation of
MEG3 is associated with the development and progression of cancer, suggesting that MEG3 may function as a potential
biomarker and therapeutic target for human cancers.
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Introduction

In fact, cancer is a complex disease and genetic alterations
only reflect a piece. Recent studies proved that, lncRNAs
can also contribute in numerous biological and cellular aspects
for instance cell proliferation, differentiation, and apoptosis
represent vital roles for lncRNAs in the etiology of several
disease state [1, 2]. Recently, the scientific research
found that there is a clear association between lncRNAs and
tumorigenesis processes [3]. Although, dysregulation of vari-
ous lncRNAs in tumor samples compared with their normal
counterparts have been reported in different types of cancer
[4]. This dysregulation might affect the cellular functions to
develop cancer cells, for example increasing cell proliferation,
prevention of apoptosis, promotion of angiogenesis, induction
of metastasis, and inhibition of tumor suppressors [5, 6].
Interestingly, a vast variety of lncRNAs can be classified ac-
cording to the expression pattern and function at the cellular
level into tumor suppressor genes and oncogenes [7]. Previous
studies have been revealed that the p53 pathway is regulated
through lncRNAs, directly or indirectly [8]. One of these

lncRNAs is MEG3 which regulate the key tumor suppressor
genes and inhibit angiogenesis [9]. This review article will
provide an overview of the MEG3 gene, the association be-
tween MEG3 and tumor suppressor protein coding genes, the
role of MEG3 to inhibit angiogenesis, and alternations of
MEG3 in different types of cancer.

MEG3

Maternally expressed gene 3 (MEG3), located in human chro-
mosome 14q32.3 within DLK1-MEG3 locus [10]. This gene
composed of 35 kb size and consists of ten exons [9]. MEG3
is a maternally imprinted gene contains ten exons and encodes
an approximately 1.6 Kb long noncoding RNA [11]. Gene
trap locus 2 (Gtl2) is the mouse homolog of human MEG3
[9]. The promoter of MEG3 comprises a TATA- and CCAAT-
box, the RNAs transcripted from this gene by RNA polymer-
ase II are polyadenylated at 3′ end [12, 13]. LncRNA MEG3
localize in the nucleus and cytoplasm [14]. The gene expres-
sion in the DLK1-MEG3 region controlled by two differen-
tially methylated regions (DMRs) that comprised of multiple
methylated CpG sites: the intergenic DMR (IG-DMR) located
about 13 kb upstream from MEG3 transcription start site, and
post fertilization-derived secondary (MEG3-DMR) over-
lapped with the promoter 1.5 kb upstream [15] (Fig. 1). In
addition, MEG3 expression induced by cyclic AMP
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(cAMP), the positive regulatory element, which regulates
gene expression via cAMP response element (CRE) site re-
sides in MEG3 proximal promoter between −69 and − 49 se-
quences [16].

MEG3 expressed at abundant levels in many tissues and
which plays a vital role in development and growth [17].
Failure to control imprinting locus may cause moderate to
severe developmental disorders [18]. Furthermore, a single
nucleotide polymorphism (SNP) within the MEG3 intron
which increased the susceptibility to type 1 diabetes [19].
Additionally, the MEG3 expression has been demonstrated
to be deregulated in a variety of primary human cancers
[20]. Interestingly, MEG3 act as a tumor suppressor through
the accumulation of p53 protein which activates its down-
stream target genes [21].

Correlation between MEG3 and p53 in Tumor
Suppression

TP53

The TP53 gene (Tumor Suppressor Protein p53) is found on
chromosome 17p13.1 [22]. It encodes a 53 kDa p53 protein
and composed of 393-amino-acid [23]. p53 has been referred
to as Bguardian of the genome^ [24], which controls cell
growth through preservation of DNA integrity at a critical
point from cellular damage [25]. The p53 protein is kept at
an extremely low levels under normal conditions, mainly by
MDM2 (Murine/human double minute 2), which mediates a
ubiquitin degradation of p53 [26]. p53 can be activated
through various types of cellular stressors, such as DNA dam-
age, telomere erosion, hypoxia, metabolic deprivation, or on-
cogenic stress [27, 28]. This activation resulting in stimulation
of a numerous of molecular pathways including cell cycle
arrest, DNA repair, senescence, or apoptosis [25, 29].
Around half of all cancers p53 is mutated in human, therefore,
p53 is considered one of the most extensively reported tumor
suppressor protein [30]. Previous data reported the ability of
MEG3 to regulate p53 [21].

Association of p53 and MEG3

Several lincRNAs found to regulate the p53 tumor suppressor
pathway directly or indirectly [8]. One of these, MEG3 could

suppress cancer cell proliferation or induce apoptosis [31].
Under physiological conditions, p53 has an enormously short
lifespan because of the degradation mediated by MDM2, a
RING finger E3 ubiquitin ligase [32]. Stabilization of p53
occurs through inhibition of MDM2 which achieved through
posttranslational modifications, including phosphorylation,
acetylation, and sumoylation of the amino terminus of p53 at
specific amino acids to prevent p53 interaction with MDM2
[33–35] (Fig. 2).

Numerous studies reported that upregulation of MEG3 re-
sult in a noteworthy induce p53 stability and, therefore, pro-
tein levels [18, 21]. Furthermore, previous studies observed
that MEG3 decreased MDM2 expression consequently acti-
vates p53 [21, 36]. Remarkably, there are other likely mecha-
nisms that MEG3 regulates p53 [21, 36]. An interesting fea-
ture about the regulation of p53 is a number of transcriptional
coactivators contribute to the maintenance of stability and
control p53 function [37]. In the light of recent studies in
lncRNA that function as a transcriptional coactivator of the
p53 [38]. It is likely that MEG3 functions as a coactivator by
folding into a complicated structure to trigger its transcription-
al activity [21, 36]. Moreover, the p53 protein is active con-
formation a homotetramer, and in this form, p53 allowed to act
as a transcription factor [39]. Meanwhile, another possible
way for MEG3 to activate p53 through contributions in its
tetramer formation [36]. The p53 protein consists of three
main domains: the transactivation domain (TAD), the DNA
binding domain (DBD), and the tetramerization domain
(TET) [40]. In cancer, most p53 mutations occur in the DBD
and thus lose the capacity to stimulate gene transcription
[41–43]. However, a study showed that DBD of p53 is impor-
tant for the direct association with MEG3. Researchers sug-
gested that MEG3 dissociated afterwards and p53 activated its
target genes [36].

However, twelve MEG3 isoforms have been discovered,
all these isoforms fold into three main conserved motifs, M1,
M2, andM3 [11]. M2 is essential for the positive regulation of
p53-mediated transactivation [11]. Interestingly, p53 activated
by MEG3 induces expression of GDF15 (Growth/differentia-
tion factor-15) which belongs to the transforming growth fac-
tor (TGF)-β superfamily, a potent growth inhibitor [21, 44,
45]. Although MEG3 promotes expression of p21 via p53 to
enhance cell cycle arrest and apoptosis [46]. Also, researchers
found that other some genes could be activated by MEG3 like
caspase 3 which is an essential element of the apoptotic

Fig. 1 Schematic diagram of the DLK1–MEG3 locus. The maternal allele prevented the expression of DLK1 through methylation at this region while
the MEG3 gene expression controlled by two DMRs, IG-DMR and MEG3-DMR
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machinery while decreased the expression of Bcl-2 and cyclin
D1 to inhibit cell proliferation [47].

p53 Independent Pathway

On the other hand, MEG3 could arrest cell growth through
retinoblastoma (Rb), a potent suppressor of G1-S phase [48,
49] (Fig. 2). Since MEG3 inhibits MDM2 leading to elevating
the active form of Rb levels. After stimulation, Rb interacts
with transcription factor E2F and block transcription of target
their genes [48, 50]. Furthermore, MEG3 regulate Rb directly
or indirectly through RNA-protein bindings or CDKN4A, re-
spectively [51, 52].

MEG3 Negatively Regulates Angiogenesis

Recently, researchers discovered that lncRNAs existed in the
endothelium and may be involved in endothelial pathological
processes and physiological behaviors [53]. Angiogenesis is
pivotal for cancer growth through neovessels sprout from pre-
existing vessels and consequently activating invasion and me-
tastasis [54]. Vascular endothelial growth factor (VEGF) is the
crucial signaling molecule for angiogenesis by regulating pro-
liferation, survival, and migration [55]. Moreover, Notch sig-
naling pathway, which coordinates VEGF in vascular devel-
opment and highly expressed in arteries compared to veins
[56]. Previous studies strongly suggested the association be-
tween MEG3 and angiogenesis [57] (Fig. 2). Gordon et al.
reported remarkable elevated in the gene expression of some
genes of VEGF pathway and strongly increased density of
cortical microvessel the Meg3- knockout embryos [58].
Moreover, the MEG3 level is inversely associated with
VEGF gene expression in cartilage samples from osteoarthri-
tis patients [59]. However, upregulation of MEG3 arrest cell
growth, invasion, and angiogenesis in breast cancer cells via
declining expression of the PI3K/Akt signaling pathway and
its downstream target genes MMP-9, VEGFA, PGF, bFGF,

TGF-β1, and PCNA (proliferating-cell nuclear antigen) [60].
Furthermore, angiogenesis after ischemic brain injury re-
quired increased expression of Hes1 and Hey1 target genes
for Notch pathway which enhanced through MEG3 silencing
while reversed by notch inhibitor [61].

Under hypoxia circumstance, HIF-1α (Hypoxia-
Inducible Factor) induced the expression of MEG3 in
human umbilical vein endothelial cells via interacting
with CREB-binding protein (CBP)/p300 to elevate
CREB activity found on MEG3 promoter region.
Strangely, the absence of MEG3 gene repress VEGFR2
mRNA in contrast had no association with VEGFR1.
Moreover, decline expression of MEG3 blocked VEGF-
stimulated endothelial cell proliferation, migration and
angiogenesis [62]. Besides, miRNAs may involve in the
suppression of angiogenesis mediated by MEG3 [63].

Effect of Methylation on MEG3

The other piece of cancer puzzle is epigenetics, which inves-
tigates alternations in gene expression not expressed by DNA
sequence mediated by at least two main mechanisms: DNA
methylation and modifications of histone protein [64].
Aberrant DNA methylation is frequently associated with ge-
netic instability and cancer development through inactivation
of specific cancer-related genes [65]. DNA methylation is an
epigenetic modification established by DNA methyltransfer-
ases (DNMTs) whose catalyzed attachments of methyl group
to the carbon of cytosine residue in the CpG islands (genomic
regions rich in CpG dinucleotides) which present in ~ 70% of
human promoters this leads to directly interfere with transcrip-
tion factors and RNA polymerase II assembly at promoters.
Alternatively, DNAmethylation can function as a platform for
different chromatin remodeling enzymes including HDACs
(Histone Deacetylases) therefore condensation of the chroma-
tin [66]. Several studies describe repression of tumor

Fig. 2 The interaction of MEG3
with proliferation inhibition
proteins p53 and Rb through
inhibition of MDM2 and
activation of CDKN4A
respectively. Also, inhibition of
the expression of VEGF and
Notch to suppress angiogenesis
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suppressor genes by hypermethylation of their promoters dur-
ing carcinogenesis [67].

However, several human cancers carry loss of expression
of MEG3 as a result of an epigenetic modification [20].
Specifically, hypermethylation in the MEG3 promoter region,
enhancer or IG-DMR are negatively impact on the expression
level. Methylation within the IG-DMR occurred at very few
particular CpG positions, especially at CpG positions 7 and 8
in human clinically nonfunctioning tumors [68]. In addition,
the MEG3 CRE region involves the CpG islands which could
be methylated to block CREB binding and disrupt promoter
activity [16]. Although the first intron ofMEG3 show aberrant
methylation in acute myeloid leukemia which is demethylated
by TET2 (The ten–eleven translocation), whose catalyze the
o x i d a t i o n o f 5 - m e t h y l c y t o s i n e t o f o r m 5 -
hydroxymethylcytosine, resulting in stimulation of MEG3 ex-
pression [48].

Normally, several proteins interact with DNMT1 such as
PCNA and URHF1 (E3 ubiquitin-protein ligase) to form a
complex for targeting DNMT1 to replication forks and main-
taining DNA methylation in mammalian cells during DNA
replication. In contrast, this complex plays both maintenance
and de novo DNA in cancer [69]. Expression of MEG3 is
inversely correlated with PCNA in non-small cell lung cancer
(NSCLC) [70]. AlthoughUHRF1 caused hypermethylation of
MEG3 promoter through modulation of DNMT1 in hepato-
cellular carcinoma (HCC) [71]. Interestingly, cancer cells
treated with DNMT1 inhibitors such as 5-AzadC and RNAi
or miR-148a in glioma [72] and gastric cancer [73] respective-
ly, result in the reduction of DNMT1 andMDM2 expressions,
and noteworthy positive changes in MEG3 expression levels
and encouraged re-expression of tumor suppressor genes,
therefore, induced apoptosis. Notably, Rb protein also regu-
lates DNMT1 and hence regulates promoter methylation of
variant genes [74]. Specifically, it has been shown that stimu-
lation of Rb protein causes downregulation of expression of
DNMT1 [75]. Furthermore, miR-26a has been showed to con-
trol MEG3 expression through regulating DNMT3b expres-
sion [76]. Moreover, the hypermethylation of MEG3 correlat-
ed with poor survival of retinoblastoma patients in retinoblas-
toma [77]. Collectively, these findings establishing embroiled
DNMTs in the decreasing expression of MEG3 and subse-
quently MEG3 target genes in cancer.

Downregulation of MEG3 in Cancer

Breast Cancer

Breast cancer is a heterogeneous disease threatening the health
of women [78]. Several reports demonstrate that lncRNAs are
critical regulators of breast cancer progression, such as
HOTAIR [79], lncRNA ROR [80], lncRNA 00617 [81],

lncRNA SOX2OT [82], CCAT2 [83], GAS5 [84], and
MALAT-1 [85]. Likewise, the MEG3 expression was remark-
ably decreased in breast cancer tissues compared to adjacent
normal tissues and related to poor overall survival rate,
progression-free survival rate, lymph nodes metastasis, differ-
entiation grade and tumor node metastasis (TNM) stage.
MEG3 also may act as a novel biomarker in breast cancer
patients [86]. The ectopic expression of MEG3 RNA in breast
tumor cells was decreased levels of MDM2 mRNA.
Therefore, MEG3 capable of inducing p53 accumulation and
stabi l i ty through downregulat ing MDM2 levels .
Consequently, ectopic expression of MEG3 enhanced the
binding of p53 tometastasis suppressor genes in breast cancer;
Maspin, KAI1’s, and apoptosis-related genes; p21, but not to
Bcl-2 or Bax. As a result, MEG3 inhibit tumor growth, migra-
tion and invasion [87]. Moreover, the MEG3 repressed EMT
process and invasion in breast cancer mainly via sponge miR-
421 resulting in upregulation of E-cadherin which is consid-
ered to be a negative regulator of EMT event. Thus, MEG3
suppressed cell invasion and EMT by increasing E-cadherin
levels and also decreasing ZEB1, ZEB2, and Vimentin whose
expression levels correlated with increasing cell invasion [88].
Mondal et al. discovered the mechanism whereby MEG3
interreact with chromatin to detect MEG3 binding sites from
a genome-wide chromatin in breast cancer cells via a modified
chromatin oligo affinity precipitation and other various exper-
iments. Analysis of MEG3 binding sites showed enrichment
of a GA-rich motifs to direct MEG3 to its target genes through
RNA–DNA triplex and facilitate the recruitment of transcrip-
tional repression proteins; PRC2 (polycomb repressive com-
plex 2) and H3K27me3 to specific genes, such as TGFB2,
TGFBR1 and SMAD2 that are involved in TGF-β pathway
[89].

Liver Cancer

Liver cancer is the fifth most widespread cancer around the
globe, accounting for 9.1% of all cancer-related deaths world-
wide in 2012 [89]. Among liver cancers, HCC is the sixth
most prevalent cancer worldwide [90]. However, dysregula-
tion of lncRNAs is associated with the incidence and progres-
sion of liver cancer, for example, lncRNA CUDR [91],
HOTAIR [92], lncTCF7 [93], and DILC [94]. MEG3 levels
were comparatively decreased in HCC Huh7 cells, whereas
miR-664 expression was significantly upregulated. However,
the expression levels of miR-664 target gene which is respon-
sible for metabolizing the ethanol, ADH4 (Alcohol dehydro-
genase 4) were remarkably lower in Huh7 cells. While over-
expression of MEG3 is negatively regulated miR-664 expres-
sion and may be promoted its degradation resulting in in-
creased ADH4 in Huh7 cells. Furthermore, MEG3 promoter
involved some transcription factor binding sites, for instance,
Stat6, Ets, Stat3, Stat5, CREB and NF-κB; however, NF-κB
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in HCC cells may regulate expression of MEG3 and leads to
cancer development [95]. Interestingly, it was confirmed that
MEG3 suppress liver cancer cells by boosting the expression
and maturation of miR-122 that is mediated downregulation
of glycolytic enzyme, PKM2 (Pyruvate kinase muscle iso-
zyme M2). Thus, MEG3 could arrest liver cancer develop-
ment in some way through decreasing PKM2 levels, the pos-
itive regulator of cyclin D1 and C-Myc levels. Remarkably,
MEG3 overexpression is closely associated with increasing
the expression and phosphorylation of ubiquitin-proteasome
system dependent on PTEN2 resulting in degradation of β-
catenin in liver cancer cells [96]. Researchers reported a note-
worthy decline in MEG3 levels in both CCl4-induced mouse
liver fibrosis models and human fibrotic livers. Methylation-
specific PCR (MSP) results indicated that decline expression
of MEG3 is roughly linked with promoter hypermethylation
in human hepatic fibrotic tissues, liver tissues of mice treated
with CCl4, and LX-2 cells treated with TGF-β1, however,
treatment of TGF-β1-treated LX-2 cells with 5-azadC remark-
ably reversed MEG3 promoter hypermethylation mediated by
TGF-β1 and subsequently inhibiting hepatic stellate cell acti-
vation and proliferation. Strikingly, increased expression of
MEG3 in LX-2 cells treated with TGF-β1 suppressed cell
proliferation through decreasing α-SMA and Col1A1 levels,
while induced cell apoptosis by activating p53 and enhancing
cytochrome c release, therefore, activating caspase-3 [97].

Glioma

Glioma is the most common and aggressive malignant in the
central nervous system [98]. Some of lncRNAs participate in
glioma progression such as lncRNA uc.283-plus [99],
CRNDE [100], XIST [101], and lncRNA-ROR [101]. Wang
et al. demonstrated that levels of MEG3 were declined in 82%
of glioma tissues compared to normal tissues. However, up-
regulation of MEG3 expression significantly blocked devel-
opment of cancer in U87MG and U87MGhuman glioma cell
lines by inducing p53 expression resulted in G0/G1 arrest
[102]. Amazingly, abnormal stimulation of Wnt induced as-
sembly ofβ-catenin in the nucleus and is stimulated transcrip-
tion of several oncogenes [103], whereas inversely high ex-
pression of MEG3 could suppress cell proliferation by
inactivating Wnt/β-catenin signaling pathway [104].
Although, the negative regulator of PI3K, PTEN, is sup-
pressed by miR-19a which is overexpressed in glioma in con-
trast toMEG3; however, MEG3 overexpression abolished this
suppression through sponging miR-19a [105]. Besides,
MEG3 overexpression by transfection restrained the function
of miR-93 in inducing proliferation and preventing apoptosis
in U-251 cells. Correspondingly, MEG3 overexpresion de-
creased levels of the cell proliferation antigen Ki67 and
PCNA, while upregulated levels of caspase-3 and caspase-9.
Moreover, levels of p-PI3K and p-AKT were diminished by

lncRNA-MEG3 and elevated through miR-93 mimics. These
outcomes revealed that MEG3 overexpression may take part
in glioma by suppressing the PI3K/AKT pathway [106].

Colorectal Cancer

Colorectal cancer (CRC) is the third most common malignan-
cy in the most parts of the world [107]. Several studies report-
ed that lncRNAs play a crucial role in CRC occurrence and
progression such as lncRNA CASC11 [108], RP11-708H21.4
[109], CRNDE [110], PRNCR1 [111], H19 [112], ncRAN
[113], and loc285194 [114]. A study found that MEG3 levels
were decreased in CRC tissues and evidently associated with
histological grade, tumor invasion depth, and TNM stage
[115]. Although downregulation of MEG3 in CRC patients
exhibited poorer overall survival and disease-free survival
than those with higher MEG3 level [116]. Induction of
MEG3 expression resulted in accumulation of p53 protein
and downregulation of cyclin D1 in HCT-116 cells transfected
with pCDNA-MEG3 [115]. Interestingly, MEG3 bind with
Clusterin, the positive regulator of NF-κB and Bcl-2 signaling
pathways, thus reducing the oncogene’s capacity of Clusterin
through preventing its binding with target proteins. Strikingly,
the upregulation of vitamin D treatment or vitamin D receptor
associated with increasing levels of MEG3 in CRC cells
resulting in better overall survival. The mechanism of action
of the vitamin D is dependent on binding vitamin D receptor
to the promoter of MEG3 and may enhanced its expression
through regulating Clusterin [116]. Remarkably, decreasing
levels of MEG3 is closely linked to oxaliplatin therapy resis-
tance. In contrast, MEG3 overexpression enhanced
chemoresponse by promoting oxaliplatin-induced cell cyto-
toxicity in CRC cells [117]. However, the correlation between
MEG3 SNPs and the risk of CRC was showed that people
with rs7158663 AA genotype contributed to high risk of CRC
in Chinese population with a noteworthy correlation with
age ≤ 60 and family history [118].

Cervical Cancer

Cervical cancer is the secondmost common cancer around the
world affecting the female reproductive system [119]. Several
lncRNAs displayed aberrant expression in cervical cancer in-
cluding HOTAIR [120], GAS5 [121], XLOC_010588
(TUSC8) [122], lncRNA LET [123], and lncRNA-CCHE1
[124]. Moreover, expression of MEG3 was notably declined
in cervical cancer tissues; however, ectopic expression of
MEG3 resulting in repression development of cervical cancer
in HeLa and C-33A cells through inducing G2/M cell cycle
arrest and apoptosis [125]. Correspondingly, decreased levels
of MEG3 in cervical cancer tissues were inversely correlated
with miR-21-5p whose expression is indirectly suppressed
p53, while re-expression of MEG3 levels participated at least
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in part to p53 and caspase-3 accumulations through miR-21-
5p suppression in cervical cancer in HeLa and CaSki cells
[126]. Using MSP, Zhang et al. found that MEG3 promoter
in cervical cancer was hypermethylated in 65.3% of tissues
[127] and 53.6% of plasma samples [128] whereas both were
conflicted with MEG3 expression. Remarkably, methylation
levels of MEG3 promoter associated with shorter recurrence-
free survival, however, demethylation of MEG3 promoter en-
hanced its expression in cervical cancer cells [127].
Interestingly, MEG3 promoter methylation in plasma can be
considered as a risk factor for HR-HPV (High Risk-Human
papillomavirus) infection, cervical intraepithelial neoplasia,
and lymph node metastasis, therefore, plasma MEG3 methyl-
ation levels may be used as a diagnostic and prognostic bio-
marker for cervical cancer [128]. Unlike DNA methylation,
inhibition of EZH2 histone methyltransferase through 3-
Deazaneplanocin treatment had no effect on MEG3 dysregu-
lation [127]. Ectopic MEG3 expression suppressed develop-
ment of cervical cancer cells through regulating PI3K/Akt
signaling pathway, and controlling MMP-2, MMP-9, Bax,
Bcl-2 and p21 expressions to promote apoptosis [129].

Gastric Cancer

Gastric cancer is the second cancer leading death in the world
[130]. Accumulating evidences showed that lncRNAs’ ex-
pression may be deregulated in gastric cancer such as
HOXA11-AS [131], FENDRR [132], GClnc1 [133],
CCAT2 [134], and lncRNA-SNHG1 [135]. Moreover,
MEG3 expression levels were markedly depressed in
69.23% of gastric cancer tissues and cell lines [136] whereas
MEG3 overexpression promoted p53 transcription to suppress
gastric cancer growth and metastasis [137]. A low level of
MEG3 in gastric cancer tissues was significantly associated
with size of tumor, TNM stages, and depth of invasion.
Furthermore, patients with high levels of MEG3 had better
overall survival rate than other patients [138]. Interestingly,
the capability of MEG3 to stimulate apoptosis via sequester-
ing miR-181 family in gastric cancer cells to upregulate Bcl-2
levels, and then suppressing gastric carcinogenesis [139].
Researchers observed that 5-aza-CdR treatment enhanced ex-
pression of MEG3 in AGS and MGC803 gastric cancer cell
lines, which is indicated methylation may affects the expres-
sion of MEG3 [138]. Noteworthy, it has been found that miR-
148a enhances MEG3 expression by directly targeting
DNMT1 resulted in the proliferation suppression in gastric
cancer cells [136].

Lung Cancer

Lung cancer is the most frequently cause of cancer deaths
worldwide for both men and women [140]. The two main
histological types of lung cancer are NSCLC and small cell

lung cancer (SCLC) [141]. Scientists have found that
lncRNAs participated in lung cancer progression for example,
ZXF1 [142], GHSROS [143], MVIH [144], HOTAIR [145],
CCAT2 [146], and SPRY4-IT1 [147]. However, MEG3 levels
were strongly decreased in NSCLC tissues compared to adja-
cent normal tissues, while upregulation of MEG3 could re-
markably increase p53 protein level by decreasing levels of
MDM2. In addition, DNA methylation was reported in 96%
of NSCLC tissues in MEG3 promoter and associated with its
downregulation [70]. Another report demonstrated that ex-
pression of MEG3 in NSCLC cell lines was negatively corre-
lated with miR-205-5p whose expression enhanced cell pro-
liferation and repressed apoptosis through targeting low-
density lipoprotein (LDL) receptor-related protein-1 (LRP1).
Previous studies reported that LRP1 acted as a tumor suppres-
sor in cancer [148, 149]. However, MEG3 may act as a com-
peting endogenous RNAs (ceRNA) to increase expression of
LRP1 by competitively binding miR-205-5p in NSCLC. In
addition, overexpression of MEG3 enhanced p53, p21 and
caspase-3 protein levels, while miR-205-5p upregulation sup-
pressed these proteins [46]. Despite the fact that MEG3 sup-
press EMT process, Terashima et al. found thatMEG3 interact
with JARID2, the cofactor of PRC2, thus enhanced accumu-
lations of JARID2 and PRC2 that were involved in TGF-β-
dependent regulation of H3K27 methylation and EZH2 as-
sembly on the regulatory regions of CDH1 and miR-200 fam-
ily genes therefore induced EMT process in A549 and LC-2/
ad lung cancer cell lines. However, MEG3 knockdown could
represent a mechanism for the silencing of EMT process
through blocking EZH2 assembly, H3K27 methylation, and
transcriptional suppression of these genes [150]. On the other
hand, MEG3 level was remarkably declined in cisplatin-
resistant A549/DDP lung cancer cells. In contrast, increased
expression of MEG3 enhanced the sensitivity of A549 cells to
cisplatin and promoted apoptosis via p53 and Bcl-xl regula-
tion [151].

Ovarian Cancer

Ovarian cancer is among the most lethal gynecological malig-
nancy in the world [152]. Recent studies identified a number
of lncRNA associated with ovarian cancer including ASAP1-
IT1 [153], BACE1-AS [154], BCYRN1 [155] CRNDE [156],
FAL1 [157], and HOST2 [158]. Researchers observed that
MEG3 expression was lost in more than 70% of ovarian can-
cer tissues which is consistent with hypermethylation of the
MEG3 promoter. However, absence ofMEG3 expression cor-
related to grade of the tumor. Noteworthy, 5-aza-CdR treat-
ment induced MEG3 levels in OVCAR3 cells. Upregulation
of MEG3 expression was elevated p53, GDF15 and RB1
mRNA and protein levels and this caused prolifration inhibi-
tion and apoptosis [159]. MEG3 also capable to initiate
atuophagy through increased levels of LC3, LAMP1, and
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ATG3 (autophagy-related proteins) while decrease p62.
MEG3 interact with ATG3 resulting in type II cell death.
Furthermore, overexpression of MEG3 enhance stabilization
and prevent decay of ATG3 after treated with actinomycin
[160].

Osteosarcoma

Osteosarcoma is the most common primary skeletal malignan-
cy in the world [161]. Aberrant expression of specific
lncRNAs led to osteosarcoma. For instance, HOTAIR [162],
MALAT1 [163], H19 [164], SNHG12 [165], andMFI2 [166].
MEG3 expression was significantly diminished in osteosarco-
ma patients and remarkably associated with clinical stage,
distant metastasis, and poor survival [167]. Re-expression of
MEG3 in osteosarcoma cell lines induced expression of p53
through decreasing expression of MDM2 and its target gene
MMP9. Although MEG3 enhanced expression of caspase-3
while reduced expression of Bcl-2 and cyclin D1. Therefore,
MEG3 could inhibit cell proliferation and induce apoptosis
[47]. Among miRNAs, miR-664a was upregulated in osteo-
sarcoma which function as an onco-microRNA through sup-
pression of MEG3 expression. However, reducing expression
level of miR-664a induced expression of MEG3 [168].

These findings imply that MEG3 suppresses progression
and enhances apoptosis of cancer. Nevertheless, the precise
molecular roles of MEG3 need to be elucidated. More ad-
vanced studies are necessary to determine the association be-
tween MEG3 and EMT process. Table 1 summarizes the role
of MEG3 in cancer.

The Role of MEG3 and miRNAs in Cancer

Increasing data provides a role for the MEG3 to repress cell
proliferation and promote apoptosis through interacting or
sponging and sequestering miRNAs from their target genes.
It has been detected that MEG3 is required for suppression
EMT process through miRNAs. Interestingly, MEG3 could
suppress Hh-mediated EMT process in hepatic stellate cells
by sponging miR-212 and reducing Smo (Smoothened) pro-
tein to regulate Hh (Hedgehog) pathway activation while
miR-212 could increase Ptch1 protein [169]. Moreover, renal
fibrosis symptoms include EMT of tubular epithelial cell and
thus can be induced by TGF-β1. However, upregulated ex-
pression of MEG3 by help of miR-185, the negative regulator
of DNMT1, is associated with inhibition of TGF-β1-induced
renal fibrosis [170]. Besides,MEG3may function as a ceRNA
to increase expression of RASL11B by competitively binding
miR-7 to enhance G0/G1 cell cycle arrest and apoptosis in
clear cell renal cell carcinoma [171]. Moreover, MEG3 is neg-
atively regulating miR-499-5p to induce expression of CYLD
which acts as an antitumor by suppressing JNK/AP-1 and β1-

integrin signaling pathways in melanoma tissues consistently
promoting cell apoptosis [172]. MEG3 also enhanced the ex-
pression of Bax and decreased bcl-2 in chronic myeloid leu-
kemia cells through silencing the expression of miR-21 to
inhibit proliferation and induce apoptosis [173]. Although
high MEG3 expression levels inhibited miR-16 expression,
thereby increasing levels of SMAD7 in IL-1β-induced
chondrocytes of rat osteoarthritis model [174]. However,
MEG3 acts as a tumor suppressor in leukemia through com-
petitively binding miR-184 [175]. Also, miR-29 enhanced
MEG3 expression to inhibit HCC progression by targeting
DNMT-1 and DNMT3B [176]. In gastric cardia adenocarci-
noma, researchers found that expression of miR-770 and its
host gene MEG3 were decreased due to aberrant hypermethy-
lation [177]. Surprisingly, MEG3 promoted osteosarcoma
cells proliferation and metastasis through sponging miR-127,
the negative regulator of JNK and Wnt signaling pathways
through reducing ZEB1 levels [178].

Emerging reports had found that miRNAs played a key role
in chemotherapy. Remarkably, overexpression of MEG3 in
CRC cells was improved sensitivity to oxaliplatin through
serving as an endogenous sponge of miR-141 to induce ex-
pression of PDCD4 (programmed cell death 4) [179].
Moreover, MEG3 induced sensitivity to cisplatin in NSCLC
cells through sponging miR-21-5p and this cause SOX7 ex-
pression by [180]. AlthoughMEG3 expression in thyroid car-
cinoma enhanced the sensitivity to radioiodine (131I) treatment
and promoted apoptosis and DNA damage through sponging
miR-182 [181]. Furthermore, curcumin upregulates expres-
sion of MEG3, leading to the silencing of miR-214 in ovarian
cancer cells and decreasing extracellular vesicles, which con-
tributes to suppression of chemoresistance [182].

Overall, several studies revealed that MEG3 display an
important role in cancer through interacting with different
miRNAs to regulate target genes, however, dysregulation
these interactions are closely associated with the initiation
and progression of cancer. The network visualization
ONCOIO was used to link target genes with miRNAs men-
tioned in the text (Fig. 3).

Conclusion(S)

TheHumanGenome Project was the gate of discovering that
much of the genome consist of ncRNA genes were initially
considered as Bjunk^ or Bnoise^. Recently, with the develop-
ment of technologies such as high-throughput sequencing
and microarray to whole genome gives an evidence of the
contribution of ncRNAs in various pathways. Aberrant ex-
pressionof lncRNAs is associatedwithdifferent cancer types
progression and diseases; however, few have been recog-
nized as a drop in the sea. Several lncRNAs involved in the
regulation of p53 directly or indirectly, including MEG3
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which act as a tumor suppressor in several types of cancer.
Researchers have reported themechanisms ofMEG3 to sup-
press cancer include the stimulation of p53 and Rb pathways
while inhibiting their negative regulator MDM2. In particu-
lar, MEG3 involved in the inhibition of EMT, contribution
withmiRNAs, preventing angiogenesis, regulation of PI3K/
Akt and Wnt/β-catenin signaling pathways. Thus, MEG3
regulate genes at the DNA, RNA, or protein level to inhibit
cell proliferation and induce apoptosis. Interestingly, epige-
netic changes in MEG3 promoter abolish its function.
AlthoughMEG3may act as a cancer biomarker and enhance
the chemoresponse. Further characterization of the MEG3
mechanismwill clarify howMEG3control several pathways
and elucidate its association with miRNAs and maybe other
lncRNAs to provide prognostic biomarker and cancer
therapeutic.
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